Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A monolithic array of three-dimensional ion traps fabricated with conventional semiconductor technology


The coherent control of quantum-entangled states of trapped ions1 has led to significant advances in quantum information2, quantum simulation3, quantum metrology4,5 and laboratory tests of quantum mechanics6 and relativity7. All of the basic requirements for processing quantum information with arrays of ion-based quantum bits (qubits) have been proven in principle8. However, so far, no more than 14 ion-based qubits have been entangled with the ion-trap approach9, so there is a clear need for arrays of ion traps that can handle a much larger number of qubits10. Traps consisting of a two-dimensional electrode array11 have undergone significant development, but three-dimensional trap geometries can create a superior confining potential. However, existing three-dimensional approaches, as used in the most advanced experiments with trap arrays8,12, cannot be scaled up to handle greatly increased numbers of ions. Here, we report a monolithic three-dimensional ion microtrap array etched from a silica-on-silicon wafer using conventional semiconductor fabrication technology. We have confined individual 88Sr+ ions and strings of up to 14 ions in a single segment of the array. We have measured motional frequencies, ion heating rates and storage times. Our results demonstrate that it should be possible to handle several tens of ion-based qubits with this approach.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Concept of the monolithic microtrap array.
Figure 2: Microtrap chip and trapped ions.
Figure 3: Measured ion motional frequency as a function of applied radiofrequency amplitude.
Figure 4: Single ion excitation probability as a function of laser detuning in zero magnetic field.


  1. Blatt, R. & Wineland, D. Entangled states of trapped atomic ions. Nature 453, 1008–1015 (2008).

    Article  CAS  Google Scholar 

  2. Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010).

    Article  CAS  Google Scholar 

  3. Blatt, R. & Roos, C. F. Quantum simulations with trapped ions. Nature Phys. 8, 277–284 (2012).

    Article  CAS  Google Scholar 

  4. Leibfried, D. et al. Toward Heisenberg-limited spectroscopy with multiparticle entangled states. Science 304, 1476–1478 (2004).

    Article  CAS  Google Scholar 

  5. Roos, C. F., Chwalla, M., Kim, K., Riebe, M. & Blatt, R. ‘Designer atoms’ for quantum metrology. Nature 443, 316–319 (2006).

    Article  CAS  Google Scholar 

  6. Jost, J. D. et al. Entangled mechanical oscillators. Nature 459, 683–686 (2009).

    Article  CAS  Google Scholar 

  7. Chou, C. W., Hume, D. B., Rosenband, T. & Wineland, D. J. Optical clocks and relativity. Science 329, 1630–1633 (2010).

    Article  CAS  Google Scholar 

  8. Home, J. P. et al. Complete methods set for scalable ion trap quantum information processing. Science 325, 1227–1230 (2009).

    Article  CAS  Google Scholar 

  9. Monz, T. et al. 14-Qubit entanglement: creation and coherence. Phys. Rev. Lett. 106, 130506 (2011).

    Article  Google Scholar 

  10. Kielpinski, D., Monroe, C. & Wineland, D. J. Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002).

    Article  CAS  Google Scholar 

  11. Seidelin, S. et al. Microfabricated surface-electrode ion trap for scalable quantum information processing. Phys. Rev. Lett. 96, 253003 (2006).

    Article  CAS  Google Scholar 

  12. Hanneke, D. et al. Realization of a programmable two-qubit quantum processor. Nature Phys. 6, 13–16 (2010).

    Article  CAS  Google Scholar 

  13. Barrett, M. D. et al. Deterministic quantum teleportation of atomic qubits. Nature 429, 737–739 (2004).

    Article  CAS  Google Scholar 

  14. Blakestad, R. B. et al. Near-ground-state transport of trapped-ion qubits through a multidimensional array. Phys. Rev. A 84, 032314 (2011).

    Article  Google Scholar 

  15. Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281–324 (2003).

    Article  CAS  Google Scholar 

  16. Brownnutt, M., Wilpers, G., Gill, P., Thompson, R. C. & Sinclair, A. G. Monolithic microfabricated ion trap chip design for scaleable quantum processors. New J. Phys. 8, 232 (2006).

    Article  Google Scholar 

  17. Madsen, M. J., Hensinger, W. K., Stick, D., Rabchuk, J. A. & Monroe, C. Planar ion trap geometry for microfabrication. Appl. Phys. B 78, 639–651 (2004).

    Article  CAS  Google Scholar 

  18. Amini, J. M., Britton, J., Leibfried, D. & Wineland, D. J. in Atom Chips (eds Reichel, J. & Vuletić, V.) Ch. 13 (Wiley, 2011).

    Google Scholar 

  19. Stick, D. et al. Ion trap in a semiconductor chip. Nature Phys. 2, 36–39 (2006).

    Article  CAS  Google Scholar 

  20. Britton, J. et al. Scalable arrays of rf Paul traps in degenerate Si. Appl. Phys. Lett. 95, 173102 (2009).

    Article  Google Scholar 

  21. Brownnutt, M. et al. Controlled photoionization loading of 88Sr+ for precision ion-trap experiments. Appl. Phys. B 87, 411–415 (2007).

    Article  CAS  Google Scholar 

  22. Allcock, D. T. C. et al. Heating rate and electrode charging measurements in a scalable, microfabricated, surface-electrode ion trap. Appl. Phys. B 107, 913–919 (2012).

    Article  CAS  Google Scholar 

  23. Berkeland, D. J., Miller, J. D., Bergquist, J. C., Itano, W. M. & Wineland, D. J. Minimization of ion micromotion in a Pauli trap. J. Appl. Phys. 83, 5025–5033 (1998).

    Article  CAS  Google Scholar 

  24. Hughes, M. D., Lekitsch, B., Broersma, J. A. & Hensinger, W. K. Microfabricated ion traps. Contemp. Phys. 52, 505–529 (2011).

    Article  Google Scholar 

  25. Epstein, R. J. et al. Simplified motional heating rate measurements of trapped ions. Phys. Rev. A 76, 033411 (2007).

    Article  Google Scholar 

  26. Deslauriers, L. et al. Scaling and suppression of anomalous heating in ion traps. Phys. Rev. Lett. 97, 103007 (2006).

    Article  CAS  Google Scholar 

  27. Labaziewicz, J. et al. Suppression of heating rates in cryogenic surface-electrode ion traps. Phys. Rev. Lett. 100, 013001 (2008).

    Article  Google Scholar 

  28. Letchumanan, V., Gill, P., Riis, E. & Sinclair, A. G. Optical Ramsey spectroscopy of a single trapped 88Sr+ ion. Phys. Rev. A 70, 033419 (2004).

    Article  Google Scholar 

  29. Benhelm, J., Kirchmair, G., Roos, C. F. & Blatt, R. Towards fault-tolerant quantum computing with trapped ions. Nature Phys. 4, 463–466 (2008).

    Article  CAS  Google Scholar 

  30. Brown, K. R. et al. Single-qubit-gate error below 10−4 in a trapped ion. Phys. Rev. A 84, 030303 (2011).

    Article  Google Scholar 

  31. DiVincenzo, D. P. The physical implementation of quantum computation. Fortschr. Phys. 48, 771–783 (2000).

    Article  Google Scholar 

Download references


The authors thank F. Schmidt-Kaler, C. Wunderlich, W. Hänsel, R. Blatt, M. Drewsen, D. Lucas, D Allcock and D. Moehring for useful discussions. The authors also acknowledge support from the EU STREP project MICROTRAP (IST-517675), the EU collaborative project SCALA (IST-015714) and the Pathfinder Metrology Programme of the UK National Measurement Office.

Author information

Authors and Affiliations



P.S. fabricated the ion trap chips. G.W., P.G. and A.G.S. contributed to the experimental set-up. G.W. and A.G.S. performed the measurements. A.G.S. wrote the manuscript, with contributions from the other authors.

Corresponding author

Correspondence to Alastair G. Sinclair.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 363 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wilpers, G., See, P., Gill, P. et al. A monolithic array of three-dimensional ion traps fabricated with conventional semiconductor technology. Nature Nanotech 7, 572–576 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research