Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Characterization of the motion of membrane proteins using high-speed atomic force microscopy

Abstract

For cells to function properly1, membrane proteins must be able to diffuse within biological membranes. The functions of these membrane proteins depend on their position and also on protein–protein and protein–lipid interactions2. However, so far, it has not been possible to study simultaneously the structure and dynamics of biological membranes. Here, we show that the motion of unlabelled membrane proteins can be characterized using high-speed atomic force microscopy3. We find that the molecules of outer membrane protein F (OmpF) are widely distributed in the membrane as a result of diffusion-limited aggregation, and while the overall protein motion scales roughly with the local density of proteins in the membrane, individual protein molecules can also diffuse freely or become trapped by protein–protein interactions. Using these measurements, and the results of molecular dynamics simulations, we determine an interaction potential map and an interaction pathway for a membrane protein, which should provide new insights into the connection between the structures of individual proteins and the structures and dynamics of supramolecular membranes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HS-AFM movie frames showing the motion of OmpF trimers in the membrane.
Figure 2: Diffusion analysis of OmpF.
Figure 3: MDS and experimental evaluation of OmpF–OmpF interaction pathway and potential.

Similar content being viewed by others

References

  1. Engelman, D. M. Membranes are more mosaic than fluid. Nature 438, 578–580 (2005).

    Article  CAS  Google Scholar 

  2. Phillips, R., Ursell, T., Wiggins, P. & Sens, P. Emerging roles for lipids in shaping membrane–protein function. Nature 459, 379–385 (2009).

    Article  CAS  Google Scholar 

  3. Ando, T. et al. A high-speed atomic force microscope for studying biological macromolecules. Proc. Natl Acad. Sci. USA 98, 12468–12472 (2001).

    Article  CAS  Google Scholar 

  4. Schmidt, T., Schütz, G. J., Baumgartner, W., Gruber, H. J. & Schindler, H. Imaging of single molecule diffusion. Proc. Natl Acad. Sci. USA 93, 2926–2929 (1996).

    Article  CAS  Google Scholar 

  5. Rosenbusch, P. Characterization of the major envelope protein from Escherichia coli. J. Biol. Chem. 249, 8019–8029 (1974).

    CAS  Google Scholar 

  6. Engel, A., Massalski, A., Schindler, H., Dorset, D. L. & Rosenbusch, J. P. Porin channel triplets merge into single outlets in Escherichia coli outer membranes. Nature 317, 643–645 (1985).

    Article  CAS  Google Scholar 

  7. Foulds, J. & Chai, T. J. New major outer membrane proteins found in an Escherichia coli tolF mutant resistant to bacteriophage TuIb. J. Bacteriol. 133, 1478–1483 (1978).

    CAS  Google Scholar 

  8. Housden, N. G., Loftus, S. R., Moore, G. R., James, R. & Kleanthous, C. Cell entry mechanism of enzymatic bacterial colicins: porin recruitment and the thermodynamics of receptor binding. Proc. Natl Acad. Sci. USA 102, 13849–13854 (2005).

    Article  CAS  Google Scholar 

  9. Yamashita, E., Zhalnina, M. V., Zakharov, S. D., Sharma, O. & Cramer, W. A. Crystal structures of the OmpF porin: function in a colicin translocon. EMBO J. 27, 2171–2180 (2008).

    Article  CAS  Google Scholar 

  10. Husain, M., Boudier, T., Paul-Gilloteaux, P., Casuso, I. & Scheuring, S. Software for drift compensation, particle tracking and particle analysis of high-speed atomic force microscopy image series. J. Mol. Recognit. 25, 292–298 (2012).

    Article  CAS  Google Scholar 

  11. Smith, T. G. Jr, Lange, G. D. & Marks, W. B. Fractal methods and results in cellular morphology—dimensions, lacunarity and multifractals. J. Neurosci. Methods 69, 123–136 (1996).

    Article  Google Scholar 

  12. Witten, T. A. & Sander, L. M. Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 47, 1400–1403 (1981).

    Article  CAS  Google Scholar 

  13. Spector, J. et al. Mobility of BtuB and OmpF in the Escherichia coli outer membrane: implications for dynamic formation of a translocon complex. Biophys. J. 99, 3880–3886 (2010).

    Article  CAS  Google Scholar 

  14. Kusumi, A., Sako, Y. & Yamamoto, M. Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys. J. 65, 2021–2040 (1993).

    Article  CAS  Google Scholar 

  15. Mika, J. T. & Poolman, B. Macromolecule diffusion and confinement in prokaryotic cells. Curr. Opin. Biotechnol. 22, 117–126 (2011).

    Article  CAS  Google Scholar 

  16. Anne, P. Voronoi and Voronoi-related tessellations in studies of protein structure and interaction. Curr. Opin. Struct. Biol. 14, 233–241 (2004).

    Article  Google Scholar 

  17. Cowan, S. W. et al. Crystal structures explain functional properties of two E. coli porins. Nature 358, 727–733 (1992).

    Article  CAS  Google Scholar 

  18. Hoenger, A., Pages, J. M., Fourel, D. & Engel, A. The orientation of porin OmpF in the outer membrane of Escherichia coli. J. Mol. Biol. 233, 400–413 (1993).

    Article  CAS  Google Scholar 

  19. Serge, A., Bertaux, N., Rigneault, H. & Marguet, D. Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes. Nature Methods 5, 687–694 (2008).

    Article  CAS  Google Scholar 

  20. Marguet, D., Lenne, P. F., Rigneault, H. & He, H. T. Dynamics in the plasma membrane: how to combine fluidity and order. EMBO J. 25, 3446–3457 (2006).

    Article  CAS  Google Scholar 

  21. García, R. (ed.) in Amplitude Modulation Atomic Force Microscopy 77–90 (Wiley, 2010).

  22. Uchihashi, T., Iino, R., Ando, T. & Noji, H. High-speed atomic force microscopy reveals rotary catalysis of rotorless F1-ATPase. Science 333, 755–758 (2011).

    Article  CAS  Google Scholar 

  23. Osborn, M. J. & Wu, H. C. P. Proteins of the outer-membrane of gram-negative bacteria. Annu. Rev. Microbiol. 34, 369–422 (1980).

    Article  CAS  Google Scholar 

  24. De Meyer, F. J-M., Venturoli, M. & Smit, B. Molecular simulations of lipid-mediated protein–protein interactions. Biophys. J. 95, 1851–1865 (2008).

    Article  Google Scholar 

  25. Dix, J. A. & Verkman, A. S. Crowding effects on diffusion in solutions and cells. Annu. Rev. Biophys. 37, 247–263 (2008).

    Article  CAS  Google Scholar 

  26. Saffman, P. G. & Delbrück, M. Brownian motion in biological membranes. Proc. Natl Acad. Sci. USA 72, 3111–3113 (1975).

    Article  CAS  Google Scholar 

  27. Kusumi, A. et al. Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu. Rev. Biophys. Biomol. Struct. 34, 351–378 (2005).

    Article  CAS  Google Scholar 

  28. Schirmer, T., Keller, T. A., Wang, Y. F. & Rosenbusch, J. P. Structural basis for sugar translocation through maltoporin channels at 3.1 Å resolution. Science 267, 512–514 (1995).

    Article  CAS  Google Scholar 

  29. Melo, E. & Martins, J. Kinetics of bimolecular reactions in model bilayers and biological membranes. A critical review. Biophys. Chem. 123, 77–94 (2006).

    Article  CAS  Google Scholar 

  30. Gambin, Y. et al. Lateral mobility of proteins in liquid membranes revisited. Proc. Natl Acad. Sci. USA 103, 2098–2102 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank C. Nimigean and F. Rico for critical discussion of the manuscript. The authors also thank P. Abeyrathne for support with the lipopolysaccharide detection. Work in the Scheuring laboratory was supported by the Institut Curie, the Institut National de la Santé et Recherche Médicale (INSERM), the Agence Nationale de la Recherche (ANR) and the City of Paris. Work in the Sturgis laboratory was supported by the Centre National de la Recherche Scientifique (CNRS), the Agence Nationale de la Recherche (ANR), Centre Informatique National de l'Enseignement Superieur (CINES) and Aix-Marseille University. Work in the Stahlberg laboratory was supported by the Swiss National Science Foundation (grant no. 315230_127545, and NCCRs Struct Biol and TransCure) and the Swiss Initiative for Systems Biology (SystemsX.ch).

Author information

Authors and Affiliations

Authors

Contributions

I.C. and S.S. conceived the experiments. I.C., M.H., M.C. and J.K. performed experiments. I.C., S.S., M.H., P.P-G., J-P.D. and J.N.S. analysed the data. I.C., S.S., J.N.S. and H.S. co-wrote the paper.

Corresponding author

Correspondence to Simon Scheuring.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 8995 kb)

Supplementary Movie 1

Supplementary Movie 1 (AVI 6732 kb)

Supplementary Movie 2

Supplementary Movie 2 (AVI 708 kb)

Supplementary Movie 3

Supplementary Movie 3 (AVI 1130 kb)

Supplementary Movie 4

Supplementary Movie 4 (AVI 8812 kb)

Supplementary Movie 5

Supplementary Movie 5 (AVI 974 kb)

Supplementary Movie 6

Supplementary Movie 6 (AVI 277 kb)

Supplementary Movie 7

Supplementary Movie 7 (AVI 287 kb)

Supplementary Movie 8

Supplementary Movie 8 (AVI 120 kb)

Supplementary Movie 9

Supplementary Movie 9 (AVI 11992 kb)

Supplementary Movie 10

Supplementary Movie 10 (AVI 8277 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casuso, I., Khao, J., Chami, M. et al. Characterization of the motion of membrane proteins using high-speed atomic force microscopy. Nature Nanotech 7, 525–529 (2012). https://doi.org/10.1038/nnano.2012.109

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2012.109

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing