Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Interfacial phase-change memory

Abstract

Phase-change memory technology relies on the electrical and optical properties of certain materials changing substantially when the atomic structure of the material is altered by heating1 or some other excitation process2,3,4,5. For example, switching the composite Ge2Sb2Te5 (GST) alloy from its covalently bonded amorphous phase to its resonantly bonded metastable cubic crystalline phase decreases the resistivity by three orders of magnitude6, and also increases reflectivity across the visible spectrum7,8. Moreover, phase-change memory based on GST is scalable9,10,11, and is therefore a candidate to replace Flash memory for non-volatile data storage applications. The energy needed to switch between the two phases depends on the intrinsic properties of the phase-change material and the device architecture; this energy is usually supplied by laser or electrical pulses1,6. The switching energy for GST can be reduced by limiting the movement of the atoms to a single dimension, thus substantially reducing the entropic losses associated with the phase-change process12,13. In particular, aligning the c-axis of a hexagonal Sb2Te3 layer and the 〈111〉 direction of a cubic GeTe layer in a superlattice structure creates a material in which Ge atoms can switch between octahedral sites and lower-coordination sites at the interface of the superlattice layers. Here we demonstrate GeTe/Sb2Te3 interfacial phase-change memory (IPCM) data storage devices with reduced switching energies, improved write-erase cycle lifetimes and faster switching speeds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical pump–probe testing of IPCM switching behaviour.
Figure 2: Electrical switching characteristics of IPCM devices.
Figure 3: Analysis of the RESET state.

Similar content being viewed by others

References

  1. Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. Nature Mater. 6, 824–832 (2007).

    Article  CAS  Google Scholar 

  2. Karpov, I. V., Mitra, M., Kau, D., Spadini, G., Kryukov, Y. A., & Karpov, V. G. Evidence of field induced nucleation in phase change memory. Appl. Phys. Lett. 92, 173501 (2008).

    Article  Google Scholar 

  3. Fons, P. et al. Photoassisted amorphization of the phase-change memory alloy Ge2Sb2Te5 . Phys. Rev. B 82, 041203 (2010).

    Article  Google Scholar 

  4. Makino, K., Tominaga, J. & Hase, M. Ultrafast optical manipulation of atomic arrangements in chalcogenide alloy memory materials. Opt. Express 19, 1260–1270 (2011).

    Article  CAS  Google Scholar 

  5. Kolobov, A. V., Krbal, M., Fons, P., Tominaga, J., & Uruga, T. Distortion-triggered loss of long-range order in solids with bonding energy hierarchy. Nature Chem. 3, 311–316 (2011).

    Article  CAS  Google Scholar 

  6. Lankhorst, M., Ketelaars, B. & Wolters, R. Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nature Mater. 4, 347–352 (2005).

    Article  CAS  Google Scholar 

  7. Shportko, K., Kremers, S., Woda, M., Lencer, D., Robertson, J. & Wuttig, M. Resonant bonding in crystalline phase-change materials. Nature Mater. 7, 653–658 (2008).

    Article  CAS  Google Scholar 

  8. Huang, B. & Robertson, J. Bonding origin of optical contrast in phase-change memory materials. Phys. Rev. B 81, 081204R (2010).

    Article  Google Scholar 

  9. Pirovano, A., Lacaita, A. L., Benvenuti, A., Pellizzer, F., Hudgens, S. & Bez, R. Scaling analysis of phase-change memory technology. IEDM Technical Digest 29.6.1–29.6.4 (2003).

  10. Simpson, R. E. et al. Toward the ultimate limit of phase change in Ge2Sb2Te5 . Nano. Lett. 10, 414–419 (2010).

    Article  CAS  Google Scholar 

  11. Burr, G. W. et al. Phase change memory technology. J. Vac. Sci. Technol. B 28, 223–262 (2010).

    Article  CAS  Google Scholar 

  12. Kolobov, A., Fons, P., Frenkel, A., Ankudinov, A., Tominaga, J., and Uruga, T. Understanding the phase-change mechanism of rewritable optical media. Nature Mater. 3, 703–708 (2004).

    Article  CAS  Google Scholar 

  13. Tominaga, J., Simpson, R., Fons, P. & Kolobov, A. Phase change meta-material and device characteristics. Proc. Europ. Symp. Phase Change and Ovonic Science, 54–59 (2010).

  14. Yamada, N., Ohno, E., Nishiuchi, K., Akahira, N. & Takao, M. Rapid phase-transitions of GeTe–Sb2Te3 pseudobinary amorphous thin-films for an optical disk memory. J. Appl. Phys. 69, 2849–2856 (1991).

    Article  CAS  Google Scholar 

  15. Chong, T. C. et al. Crystalline amorphous semiconductor superlattice. Phys. Rev. Lett. 100, 136101 (2008).

    Article  CAS  Google Scholar 

  16. Krbal, M. et al. Intrinsic complexity of the melt-quenched amorphous Ge2Sb2Te5 memory alloy. Phys. Rev. B 83, 054203 (2011).

    Article  Google Scholar 

  17. Akola, J. et al. Experimentally constrained density-functional calculations of the amorphous structure of the prototypical phase-change material Ge2Sb2Te5 . Phys. Rev. B 80, 020201 (2009).

    Article  Google Scholar 

  18. Simpson, R., Fons, P., Wang, X., Kolobov, A. V., Fukaya, T. & Tominaga, J. Nonmelting super-resolution near-field apertures in Sb–Te alloys. Appl. Phys. Lett. 97, 161906 (2010).

    Article  Google Scholar 

  19. Kwon, M-H. et al. Nanometer-scale order in amorphous Ge2Sb2Te5 analyzed by fluctuation electron microscopy. Appl. Phys. Lett. 90, 021923 (2007).

    Article  Google Scholar 

  20. Lee, B-S. et al. Observation of the role of subcritical nuclei in crystallization of a glassy solid. Science 326, 980–984 (2009).

    Article  CAS  Google Scholar 

  21. Hegedüs, J. & Elliott, S. Microscopic origin of the fast crystallization ability of Ge–Sb–Te phase-change memory materials. Nature Mater. 7, 399–405 (2008).

    Article  Google Scholar 

  22. Akola, J. & Jones, R. Binary alloys of Ge and Te: order, voids, and the eutectic composition. Phys. Rev. Lett. 100, 205502 (2008).

    Article  CAS  Google Scholar 

  23. Hegedus, J. & Elliott, S. R. Computer-simulation design of new phase-change memory materials. Phys. Status Solidi A 207, 510–515 (2010).

    Article  CAS  Google Scholar 

  24. Weidenhof, V., Friedrich, I., Ziegler, S. & Wuttig, M. Laser induced crystallization of amorphous GeSbTe films. J. Appl. Phys. 89, 3168–3176 (2001).

    Article  CAS  Google Scholar 

  25. Chen, G. Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Phys. Rev. B 57, 14958–14973 (1998).

    Article  CAS  Google Scholar 

  26. Taketoshi, N., Baba, T. & Ono, A. Development of a thermal diffusivity measurement system for metal thin films using a picosecond thermoreflectance technique. Meas. Sci. Technol. 12, 2064–2073 (2001).

    Article  CAS  Google Scholar 

  27. Chong, T. et al. Phase change random access memory cell with superlattice-like structure. Appl. Phys. Lett. 88, 122114 (2006).

    Article  Google Scholar 

  28. Lai, S. & Lowrey, T. OUM – a 180 nm nonvolatile memory cell element technology for stand alone and embedded application. IEDM Technical Digest 36.5.1–36.5.4 (2001).

  29. Chen, K-N. & Krusin-Elbaum, L. The fabrication of a programmable via using phase-change material in CMOS-compatible technology. Nanotechnology 21, 134001 (2010).

    Article  Google Scholar 

  30. Kim, C. et al. Direct evidence of phase separation in Ge2Sb2Te5 in phase change memory devices. Appl. Phys. Lett. 94, 193504 (2009).

    Article  Google Scholar 

  31. Yang, T-Y., Park, I-M., Kim, B-J. & Joo, Y-C. Atomic migration in molten and crystalline Ge2Sb2Te5 under high electric field. Appl. Phys. Lett. 95, 032104 (2009).

    Article  Google Scholar 

  32. Poborchii, V. V., Kolobov, A. V., & Tanaka, K. Photomelting of selenium at low temperature. Appl. Phys. Lett. 74, 215–217 (1999).

    Article  CAS  Google Scholar 

  33. Frumar, M., Firth, A. & Owen, A. Optically induced crystal-to-amorphous-state transition in As2S3 . J. Non-Cryst. Solids 192, 447–450 (1995).

    Article  Google Scholar 

  34. Elliott, S. & Kolobov, A. Athermal light-induced vitrification of As50Se50 films. J. Non-Cryst. Solids 128, 216–220 (1991).

    Article  CAS  Google Scholar 

  35. Málek, J. The applicability of Johnson–Mehl–Avrami model in the thermal analysis of the crystallization kinetics of glasses. Thermochim. Acta. 267, 61–73 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the New Energy and Industrial Technology Development Organization project ‘Research and development of nanoelectronic device technology’. The authors thank Elpida Memory Inc. for device measurement discussions, R. Kondo for technical assistance and S. Cook for reading the manuscript. R.E.S. and M.K. would like to thank the Japanese Society for the Promotion of Science for their research fellowships. All work presented here was performed under the auspices of the Center for Applied Near-Field Optics Research (CAN-FOR).

Author information

Authors and Affiliations

Authors

Contributions

J.T. conceived and designed the entropy controlled interfacial phase-change memory structures. J.T., R.E.S. and T.Y. performed the experiments. R.E.S. wrote the paper. All authors analysed the results and contributed to the discussion presented in the manuscript.

Corresponding authors

Correspondence to R. E. Simpson or J. Tominaga.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1079 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simpson, R., Fons, P., Kolobov, A. et al. Interfacial phase-change memory. Nature Nanotech 6, 501–505 (2011). https://doi.org/10.1038/nnano.2011.96

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.96

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing