Letter | Published:

Single-molecule transport across an individual biomimetic nuclear pore complex

Nature Nanotechnology volume 6, pages 433438 (2011) | Download Citation

Abstract

Nuclear pore complexes regulate the selective exchange of RNA and proteins across the nuclear envelope in eukaryotic cells1. Biomimetic strategies offer new opportunities to investigate this remarkable transport phenomenon2. Here, we show selective transport of proteins across individual biomimetic nuclear pore complexes at the single-molecule level. Each biomimetic complex is constructed by covalently tethering either Nup98 or Nup153 (phenylalanine-glycine (FG) nucleoporins) to a solid-state nanopore3. Individual translocation events are monitored using ionic current measurements with sub-millisecond temporal resolution. Transport receptors (Impβ) proceed with a dwell time of 2.5 ms for both Nup98- and Nup153-coated pores, whereas the passage of non-specific proteins is strongly inhibited with different degrees of selectivity. For pores up to 25 nm in diameter, Nups form a dense and low-conducting barrier, whereas they adopt a more open structure in larger pores. Our biomimetic nuclear pore complex provides a quantitative platform for studying nucleocytoplasmic transport phenomena at the single-molecule level in vitro.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Molecular Biology of the Cell 5th edn (Garland Science, 2008).

  2. 2.

    et al. Artificial nanopores that mimic the transport selectivity of the nuclear pore complex. Nature 457, 1023–1027 (2009).

  3. 3.

    Solid-state nanopores. Nature Nanotech. 2, 209–215 (2007).

  4. 4.

    Gatekeepers of the nucleus. Science 288, 1374–1377 (2000).

  5. 5.

    et al. The molecular architecture of the nuclear pore complex. Nature 450, 695–701 (2007).

  6. 6.

    , , , & Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded. Proc. Natl Acad. Sci. USA 100, 2450–2455 (2003).

  7. 7.

    , , , & Minimal nuclear pore complexes define FG repeat domains essential for transport. Nature Cell Biol. 6, 197–206 (2004).

  8. 8.

    et al. The yeast nuclear pore complex: composition, architecture and transport mechanism. J. Cell Biol. 148, 635–651 (2000).

  9. 9.

    , , & Virtual gating and nuclear transport: the hole picture. Trends Cell Biol. 13, 622–628 (2003).

  10. 10.

    et al. Nanomechanical basis of selective gating by the nuclear pore complex. Science 318, 640–643 (2007).

  11. 11.

    , & FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties. Science 314, 815–817 (2006).

  12. 12.

    & A saturated FG-repeat hydrogel can reproduce the permeability properties of nuclear pore complexes. Cell 130, 512–523 (2007).

  13. 13.

    Translocation through the nuclear pore complex: selectivity and speed by reduction-of-dimensionality. Traffic 6, 421–427 (2005).

  14. 14.

    et al. A bimodal distribution of two distinct categories of intrinsically disordered structures with separate functions in FG nucleoporins. Mol.Cell. Proteomics 9, 2205–2224 (2010).

  15. 15.

    et al. Selectivity mechanism of the nuclear pore complex characterized by single cargo tracking. Nature 467, 600–603 (2010).

  16. 16.

    , , & Synthetic mimic of selective transport through the nuclear pore complex. Nano Lett. 8, 3728–3724 (2008).

  17. 17.

    & Enantioseparation using apoenzymes immobilized in a porous polymeric membrane. Nature 388, 758–760 (1997).

  18. 18.

    et al. Antibody-based bio-nanotube membranes for enantiomeric drug separations. Science 296, 2198–2200 (2002).

  19. 19.

    et al. DNA-functionalized nanotube membranes with single-base mismatch selectivity. Science 305, 984–986 (2004).

  20. 20.

    , & From the trap to the basket: getting to the bottom of the nuclear pore complex. Chromosoma 115, 15–26 (2006).

  21. 21.

    , , , & Fabrication of solid-state nanopores with single-nanometre precision. Nature Mater. 2, 537–540 (2003).

  22. 22.

    , & Preparation of end-tethered DNA monolayers on siliceous surfaces using heterobifunctional cross-linkers. Langmuir 19, 6968–6975 (2003).

  23. 23.

    , , , & Patch clamp and atomic force microscopy demonstrate TATA-binding protein(TBP) interactions with the nuclear pore complex. J. Membr. Biol. 146, 263–272 (1995).

  24. 24.

    et al. Nuclear hourglass technique: an approach that detects electrically open nuclear pores in Xenopus laevis oocytes. Proc. Natl Acad. Sci. USA 96, 13530–13535 (1999).

  25. 25.

    , , & Noise in solid-state nanopores. Proc. Natl Acad. Sci. USA 105, 417–421 (2008).

  26. 26.

    & Fabrication of a synthetic nanopore ion pump. Phys. Rev. Lett. 89, 198103 (2002).

  27. 27.

    Access resistance of a small circular pore. J. Gen. Physiol. 66, 531–532 (1975).

  28. 28.

    & Three-dimensional distribution of transient interactions in the nuclear pore complex obtained from single-molecule snapshots. Proc. Natl Acad. Sci. USA 107, 7305–7310 (2010).

  29. 29.

    , , & Biophysical coarse-grained modeling provides insights into transport through the nuclear pore complex. Biophys. J. 100, 1410–1419 (2011).

  30. 30.

    , , & Electrical characterization of protein molecules by a solid-state nanopore. Appl. Phys. Lett. 91, 053901 (2007).

  31. 31.

    & Nuclear import time and transport efficiency depend on importin β concentration. J. Cell Biol. 174, 951–961 (2006).

  32. 32.

    , , & Translocation of double-strand DNA through a silicon oxide nanopore. Phys. Rev. E. 71, 051903 (2005).

  33. 33.

    , , , & Autonomy and robustness of translocation through the nuclear pore complex: a single-molecule study. J. Cell Biol. 183, 77–86 (2008).

  34. 34.

    , & Imaging of single-molecule translocation through nuclear pore complexes. Proc. Natl Acad. Sci. USA 101, 12887–12892 (2004).

  35. 35.

    et al. Nuclear transport of single molecules: dwell times at the nuclear pore complex. J. Cell Biol. 168, 233–243 (2005).

  36. 36.

    , & Detection of local protein structures along DNA using solid-state nanopores. Nano Lett. 10, 324–328 (2010).

  37. 37.

    , , , & Efficiency, selectivity and robustness of the transport through the nuclear pore complex. PLoS Comput. Biol. 3, e125 (2007).

  38. 38.

    et al. Enhancement of transport selectivity through nano-channels by non-specific competition. PLoS Comput. Biol. 6, e1000804 (2010).

  39. 39.

    et al. Direct force measurements on DNA in a solid-state nanopore. Nature Phys. 2, 473–477 (2006).

  40. 40.

    , , & Intermediate filament protein structure determination. Meth. Cell Biol. 78, 25–43 (2004).

  41. 41.

    et al. Fabrication and characterization of nanopore-based electrodes with radii down to 2 nm. Nano Lett. 6, 105–109 (2006).

  42. 42.

    & Chemically modified solid-state nanopores. Nano Lett. 7, 1580–1585 (2007).

Download references

Acknowledgements

The authors thank K.A. Williams for suggestions on the chemistry, A.R. Hall, M. van den Hout and X. Janssen for membrane fabrication and discussions, D. Grünwald and G.V. Soni for help with TIRF measurements, Y. Rabin and A.Y. Grosberg for help with theoretical work, and T. Dange, N.H. Dekker, D. Grünwald, P.L. Hagedoorn, G.F. Schneider and G.M. Skinner for discussions. This research was funded by the ‘Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)’, programme NanoSci E+ of the European Commission, and the READNA (REvolutionary Approaches and Devices for Nucleic Acid analysis) project of the European Commission. L.K. and R.Y.H.L. are supported by the National Center of Competence in Research ‘Nanoscale Science’ (NCCR-Nano), the Swiss National Science Foundation, the Biozentrum and the Swiss Nanoscience Institute.

Author information

Affiliations

  1. Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands

    • Stefan W. Kowalczyk
    • , Timothy R. Blosser
    • , Tomás Magalhães
    • , Pauline van Nies
    •  & Cees Dekker
  2. Biozentrum and the Swiss Nanoscience Institute, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland

    • Larisa Kapinos
    •  & Roderick Y. H. Lim

Authors

  1. Search for Stefan W. Kowalczyk in:

  2. Search for Larisa Kapinos in:

  3. Search for Timothy R. Blosser in:

  4. Search for Tomás Magalhães in:

  5. Search for Pauline van Nies in:

  6. Search for Roderick Y. H. Lim in:

  7. Search for Cees Dekker in:

Contributions

S.W.K., R.Y.H.L. and C.D. devised the experiments. L.K. cloned, purified and labelled proteins and carried out SPR analysis. S.W.K., T.R.B., T.M. and P.V.N. carried out the experiments and analysed data. S.W.K., R.Y.H.L. and C.D. wrote the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Roderick Y. H. Lim or Cees Dekker.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nnano.2011.88

Further reading