Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells

Abstract

Fluorescent particles are routinely used to probe biological processes1. The quantum properties of single spins within fluorescent particles have been explored in the field of nanoscale magnetometry2,3,4,5,6,7,8, but not yet in biological environments. Here, we demonstrate optically detected magnetic resonance of individual fluorescent nanodiamond nitrogen-vacancy centres inside living human HeLa cells, and measure their location, orientation, spin levels and spin coherence times with nanoscale precision. Quantum coherence was measured through Rabi and spin-echo sequences over long (>10 h) periods, and orientation was tracked with effective 1° angular precision over acquisition times of 89 ms. The quantum spin levels served as fingerprints, allowing individual centres with identical fluorescence to be identified and tracked simultaneously. Furthermore, monitoring decoherence rates in response to changes in the local environment may provide new information about intracellular processes. The experiments reported here demonstrate the viability of controlled single spin probes for nanomagnetometry in biological systems, opening up a host of new possibilities for quantum-based imaging in the life sciences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Quantum measurement of single spins in living cells.
Figure 2: Confocal image of a HeLa cell containing two isolated nanodiamonds with single NV centres and their measured ODMR spectra.
Figure 3: Quantum coherence properties of the probes NV-1a and NV-1b in HeLa-1.
Figure 4: NV axis rotation owing to motion of the nanodiamonds in HeLa-1.
Figure 5: Orientation tracking of NV-2 in HeLa-2.

Similar content being viewed by others

References

  1. Alivisatos, P. The use of nanocrystals in biological detection. Nature Biotechnol. 22, 47–52 (2004).

    Article  CAS  Google Scholar 

  2. Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–648 (2008).

    Article  CAS  Google Scholar 

  3. Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008).

    Article  CAS  Google Scholar 

  4. Chernobrod, B. M. & Berman, G. P. Spin microscope based on optically detected magnetic resonance. J. Appl. Phys. 97, 014903 (2005).

    Article  Google Scholar 

  5. Taylor, J. M. et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nature Phys. 4, 810–816 (2008).

    Article  CAS  Google Scholar 

  6. Degen, C. L. Scanning magnetic field microscope with a diamond single-spin sensor. Appl. Phys. Lett. 92, 243111 (2008).

    Article  Google Scholar 

  7. Cole, J. H. & Hollenberg, L. C. L. Scanning quantum decoherence microscopy. Nanotechology 20, 495401 (2009).

    Article  Google Scholar 

  8. Hall, L. T., Cole, J. H., Hill, C. D. & Hollenberg, L. C. L. Sensing of fluctuating nanoscale magnetic fields using nitrogen-vacancy centers in diamond. Phys. Rev. Lett. 103, 220802 (2009).

    Article  CAS  Google Scholar 

  9. Forkey, J. N., Quinlan, M. E., Alexander Shaw, M., Corrie, J. E. T. & Goldman, Y. E. Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization. Nature 422, 399–404 (2003).

    Article  CAS  Google Scholar 

  10. Sieber, J. J. et al. Anatomy and dynamics of a supramolecular membrane protein cluster. Science 317, 1072–1076 (2007).

    Article  CAS  Google Scholar 

  11. Miyawaki, A. et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388, 882–887 (1997).

    Article  CAS  Google Scholar 

  12. Hall, L. T. et al. Monitoring ion-channel function in real time through quantum decoherence. Proc. Natl Acad. Sci. USA 107, 18777–18782 (2010).

    Article  CAS  Google Scholar 

  13. Funk, R. H. W., Monsees, T. & Özkucur, N. Electromagnetic effects—from cell biology to medicine. Prog. Histochem. Cyto. 43, 177–264 (2009).

    Article  Google Scholar 

  14. Gruber, A. et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276, 2012–2014 (1997).

    Article  CAS  Google Scholar 

  15. Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nature Mater. 8, 383–387 (2009).

    Article  CAS  Google Scholar 

  16. Schrand, A. M. et al. Are diamond nanoparticles cytotoxic? J. Phys. Chem. B 111, 2–7 (2007).

    Article  CAS  Google Scholar 

  17. Chao, J. I. et al. Nanometer-sized diamond particle as a probe for biolabeling. Biophys. J. 93, 2199–2208 (2007).

    Article  CAS  Google Scholar 

  18. Maurer, P. C. et al. Far-field optical imaging and manipulation of individual spins with nanoscale resolution. Nature Phys. 6, 912–918 (2010).

    Article  CAS  Google Scholar 

  19. Steinert, S. et al. High sensitivity magnetic imaging using an array of spins in diamond. Rev. Sci. Instrum. 81, 043705 (2010).

    Article  CAS  Google Scholar 

  20. Hall, L. T., Hill, C. D., Cole, J. H. & Hollenberg, L. C. L. Ultrasensitive diamond magnetometry using optimal dynamic decoupling. Phys. Rev. B 82, 045208 (2010).

    Article  Google Scholar 

  21. de Lange, G. et al. Single-spin magnetometry with multipulse sensing sequences. Phys. Rev. Lett. 106, 080802 (2011).

    Article  CAS  Google Scholar 

  22. Chang, Y. R. et al. Mass production and dynamic imaging of fluorescent nanodiamonds. Nature Nanotech. 3, 284–288 (2008).

    Article  CAS  Google Scholar 

  23. Neugart, F. et al. Dynamics of diamond nanoparticles in solution and cells. Nano. Lett. 7, 3588–3591 (2007).

    Article  CAS  Google Scholar 

  24. Fu, C. C. et al. Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc. Natl Acad. Sci. USA 104, 727–732 (2007).

    Article  CAS  Google Scholar 

  25. Faklaris, O. et al. Photoluminescent diamond nanoparticles for cell labeling: study of the uptake mechanism in mammalian cells. ACS Nano 3, 3955–3962 (2009).

    Article  CAS  Google Scholar 

  26. Bradac, C. et al. Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds. Nature Nanotech. 5, 345–349 (2010).

    Article  CAS  Google Scholar 

  27. Hossain, F. M., Doherty, M. W., Wilson, H. F. & Hollenberg, L. C. L. Ab initio electronic and optical properties of the N-V center in diamond. Phys. Rev. Lett. 101, 226403 (2008).

    Article  Google Scholar 

  28. Zimmermann, T., Rietdorf, J. & Pepperkok, R. Spectral imaging and its applications in live cell microscopy. FEBS Lett. 546, 87–92 (2003).

    Article  CAS  Google Scholar 

  29. Hanson, R., Dobrovitski, V. V., Feiguin, A. E., Gywat, O. & Awschalom, D. D. Coherent dynamics of a single spin interacting with an adjustable spin bath. Science 320, 352–355 (2008).

    Article  CAS  Google Scholar 

  30. Cai, J. & Jones, D. P. Superoxide in apoptosis. J. Biol. Chem. 273, 11401–11404 (1998).

    Article  CAS  Google Scholar 

  31. Epstein, R. J., Mendoza, F. M., Kato, Y. K. & Awschalom, D. D. Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond. Nature Phys. 1, 94–98 (2005).

    Article  CAS  Google Scholar 

  32. Wittrup, A. et al. Magnetic nanoparticle-based isolation of endocytic vesicles reveals a role of the heat shock protein GRP75 in macromolecular delivery. Proc. Natl Acad. Sci. USA 107, 13342–13347 (2010).

    Article  CAS  Google Scholar 

  33. Chung, I., Shimizu, K. T. & Bawendi, M. G. Room temperature measurements of the 3D orientation of single CdSe quantum dots using polarization microscopy. Proc. Natl Acad. Sci. USA 100, 405–408 (2003).

    Article  CAS  Google Scholar 

  34. Rosenberg, S. A., Quinlan, M. E., Forkey, J. N. & Goldman, Y. E. Rotational motions of macromolecules by single-molecule fluorescence microscopy. Acc. Chem. Res. 38, 583–593 (2005).

    Article  CAS  Google Scholar 

  35. Kukura, P. et al. High-speed nanoscopic tracking of the position and orientation of a single virus. Nature Meth. 6, 923–927 (2009).

    Article  CAS  Google Scholar 

  36. Engel, G. S. et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786,(2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank F. Jelezko and A. Johnston for helpful discussions and advice, and S. Szilagyi for technical assistance. This work was supported by the Australian Research Council under the Centre of Excellence scheme (CE110001027), the Discovery Project scheme (DP0770715 and DP0877360), the Federation Fellowship Scheme (FF0776078) and the Baden-Wuerttemberg Foundation.

Author information

Authors and Affiliations

Authors

Contributions

L.P.M., A.S., D.S. and R.E.S. designed and constructed the confocal/ESR system, performed the measurements and carried out the data analysis. Y.Y. and F.C. planned and conducted the cellular uptake experiments, and analysed the data. D.M., L.T.H. and L.C.L.H. carried out the theoretical analyses. L.C.L.H., J.W., F.C., P.M. and S.P. conceived and directed the project. L.C.L.H. wrote the paper with contributions from all authors.

Corresponding author

Correspondence to L. C. L. Hollenberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 859 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGuinness, L., Yan, Y., Stacey, A. et al. Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nature Nanotech 6, 358–363 (2011). https://doi.org/10.1038/nnano.2011.64

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.64

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research