Sketched oxide single-electron transistor


Devices that confine and process single electrons represent an important scaling limit of electronics1,2. Such devices have been realized in a variety of materials and exhibit remarkable electronic, optical and spintronic properties3,4,5. Here, we use an atomic force microscope tip to reversibly ‘sketch’ single-electron transistors by controlling a metal–insulator transition at the interface of two oxides6,7,8. In these devices, single electrons tunnel resonantly between source and drain electrodes through a conducting oxide island with a diameter of 1.5 nm. We demonstrate control over the number of electrons on the island using bottom- and side-gate electrodes, and observe hysteresis in electron occupation that is attributed to ferroelectricity within the oxide heterostructure. These single-electron devices may find use as ultradense non-volatile memories, nanoscale hybrid piezoelectric and charge sensors, as well as building blocks in quantum information processing and simulation platforms.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: SketchSET schematic and transport characteristics.
Figure 2: Temperature-dependent differential conductance and capacitance of device A.
Figure 3: Device B side gating at T = 25 K.
Figure 4: Differential conductance and capacitance dependence on back-gate voltage at T = 16 K, device C.


  1. 1

    Kastner, M. A. The single-electron transistor. Rev. Mod. Phys. 64, 849–858 (1992).

    Article  Google Scholar 

  2. 2

    Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007).

    CAS  Article  Google Scholar 

  3. 3

    Klein, D. L., Roth, R., Lim, A. K. L., Alivisatos, A. P. & McEuen, P. L. A single-electron transistor made from a cadmium selenide nanocrystal. Nature 389, 699–701 (1997).

    CAS  Article  Google Scholar 

  4. 4

    Kubatkin, S. et al. Single-electron transistor of a single organic molecule with access to several redox states. Nature 425, 698–701 (2003).

    CAS  Article  Google Scholar 

  5. 5

    Stampfer, C. et al. Tunable graphene single electron transistor. Nano Lett. 8, 2378–2383 (2008).

    CAS  Article  Google Scholar 

  6. 6

    Ohtomo, A. & Hwang, H. Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423–426 (2004).

    CAS  Article  Google Scholar 

  7. 7

    Thiel, S., Hammerl, G., Schmehl, A., Schneider, C. W. & Mannhart, J. Tunable quasi-two-dimensional electron gases in oxide heterostructures. Science 313, 1942–1945 (2006).

    CAS  Article  Google Scholar 

  8. 8

    Cen, C. et al. Nanoscale control of an interfacial metal–insulator transition at room temperature. Nature Mater. 7, 298–302 (2008).

    CAS  Article  Google Scholar 

  9. 9

    Bi, F. et al. ‘Water-cycle’ mechanism for writing and erasing nanostructures at the LaAlO3/SrTiO3 interface. Appl. Phys. Lett. 97, 173110 (2010).

    Article  Google Scholar 

  10. 10

    Cen, C., Thiel, S., Mannhart, J. & Levy, J. Oxide nanoelectronics on demand. Science 323, 1026–1030 (2009).

    CAS  Article  Google Scholar 

  11. 11

    Bogorin, D. F. et al. Nanoscale rectification at the LaAlO3/SrTiO3 interface. Appl. Phys. Lett. 97, 013102 (2010).

    Article  Google Scholar 

  12. 12

    Irvin, P. et al. Rewritable nanoscale oxide photodetector. Nature Photon. 4, 849–852 (2010).

    CAS  Article  Google Scholar 

  13. 13

    Cen, C., Bogorin, D. F. & Levy, J. Thermal activation and quantum field emission in a sketch-based oxide nano transistor. Nanotechnology 21, 475201 (2010).

    Article  Google Scholar 

  14. 14

    Haeni, J. H. et al. Room-temperature ferroelectricity in strained SrTiO3 . Nature 430, 758–761 (2004).

    CAS  Article  Google Scholar 

  15. 15

    Warusawithana, M. P. et al. A ferroelectric oxide made directly on silicon. Science 324, 367–370 (2009).

    CAS  Article  Google Scholar 

  16. 16

    Jang, H. W. et al. Ferroelectricity in strain-free SrTiO3 thin films. Phys. Rev. Lett. 104, 197601 (2010).

    CAS  Article  Google Scholar 

  17. 17

    Zubko, P., Catalan, G., Buckley, A., Welche, P. R. L. & Scott, J. F. Strain-gradient-induced polarization in SrTiO3 single crystals. Phys. Rev. Lett. 99, 167601 (2007).

    CAS  Article  Google Scholar 

  18. 18

    Singh-Bhalla, G. et al. Built-in and induced polarization across LaAlO3/SrTiO3 heterojunctions. Nature Phys. 7, 80–86 (2010).

    Article  Google Scholar 

  19. 19

    Bockrath, M. et al. Single-electron transport in ropes of carbon nanotubes. Science 275, 1922–1925 (1997).

    CAS  Article  Google Scholar 

  20. 20

    Caviglia, A. D. et al. Electric field control of the LaAlO3/SrTiO3 interface ground state. Nature 456, 624–627 (2008).

    CAS  Article  Google Scholar 

  21. 21

    Tarucha, S., Austing, D. G., Honda, T., Van der Hage, R. J. & Kouwenhoven, L. P. Shell filling and spin effects in a few electron quantum dot. Phys. Rev. Lett. 77, 3613–3616 (1996).

    CAS  Article  Google Scholar 

  22. 22

    Kouwenhoven, L. P. et al. Excitation spectra of circular, few-electron quantum dots. Science 278, 1788–1792 (1997).

    CAS  Article  Google Scholar 

  23. 23

    Fricke, M., Lorke, A., Kotthaus, J. P., Medeiros-Ribeiro, G. & Petroff, P. M. Shell structure and electron–electron interaction in self-assembled InAs quantum dots. Europhys. Lett. 36, 197–202 (1996).

    CAS  Article  Google Scholar 

  24. 24

    Müller, K. A. & Burkard, H. SrTiO3: an intrinsic quantum paraelectric below 4 K. Phys. Rev. B 19, 3593–3602 (1979).

    Article  Google Scholar 

  25. 25

    Goldhaber-Gordon, D. et al. Kondo effect in a single-electron transistor. Nature 391, 156–159 (1998).

    CAS  Article  Google Scholar 

  26. 26

    Morello, A. et al. Single-shot readout of an electron spin in silicon. Nature 467, 687–691 (2010).

    CAS  Article  Google Scholar 

  27. 27

    Park, J. W. et al. Creation of a two-dimensional electron gas at an oxide interface on silicon. Nat. Commun. 1, 94 (2010).

    CAS  Article  Google Scholar 

  28. 28

    Knobel, R. G. & Cleland, A. N. Nanometre-scale displacement sensing using a single electron transistor. Nature 424, 291–293 (2003).

    CAS  Article  Google Scholar 

  29. 29

    Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).

    CAS  Article  Google Scholar 

  30. 30

    Jaksch, D. & Zoller, P. The cold atom Hubbard toolbox. Ann. Phys. 315, 52–79 (2005).

    CAS  Article  Google Scholar 

Download references


This work was supported by US National Science Foundation (DMR-0704022 and DMR-0906443), US Defense Advanced Research Projects Agency (W911NF-09-10258), US Army Research Office (W911NF-08-1-0317), The Fine Foundation, US Air Force Office of Scientific Research (FA9550-10-1-0524), a David and Lucile Packard Fellowship and the Fundação de Amparo à Pesquisa do Estado de São Paulo – FAPESP (contact project 05/04643-7).

Author information




G.C. carried out the major experiments. P.F.S. and C.C. carried out preliminary experiments. F.B., G.C. and D.F.B. contributed to device fabrication. C.W.B., C.M.F., J.W.P. and C.B.E. contributed to sample growth. J.L., G.C., C.C. and G.M.R. discussed and analysed the results. All authors contributed to writing of the manuscript.

Corresponding author

Correspondence to Jeremy Levy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 894 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cheng, G., Siles, P., Bi, F. et al. Sketched oxide single-electron transistor. Nature Nanotech 6, 343–347 (2011).

Download citation

Further reading


Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research