Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Comparative advantages of mechanical biosensors

Subjects

Abstract

Mechanical interactions are fundamental to biology. Mechanical forces of chemical origin determine motility and adhesion on the cellular scale, and govern transport and affinity on the molecular scale. Biological sensing in the mechanical domain provides unique opportunities to measure forces, displacements and mass changes from cellular and subcellular processes. Nanomechanical systems are particularly well matched in size with molecular interactions, and provide a basis for biological probes with single-molecule sensitivity. Here we review micro- and nanoscale biosensors, with a particular focus on fast mechanical biosensing in fluid by mass- and force-based methods, and the challenges presented by non-specific interactions. We explain the general issues that will be critical to the success of any type of next-generation mechanical biosensor, such as the need to improve intrinsic device performance, fabrication reproducibility and system integration. We also discuss the need for a greater understanding of analyte–sensor interactions on the nanoscale and of stochastic processes in the sensing environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fluidic detection limits for protein sensing.
Figure 2: Fluidic micromechanical biosensors.
Figure 3: Depletion in microfluidic structures.
Figure 4: Effect of surface-area:volume ratio on bulk target depletion.
Figure 5: Fluidic nanomechanical biosensors.
Figure 6: NEMS arrays and system integration.

Similar content being viewed by others

References

  1. Braun, T. et al. Quantitative time-resolved measurement of membrane protein-ligand interactions using microcantilever array sensors. Nature Nanotech. 4, 179–185 (2009).

    CAS  Google Scholar 

  2. Phelan, M. L. & Nock, S. Generation of bioreagents for protein chips. Proteomics 3, 2123–2134 (2003).

    CAS  Google Scholar 

  3. von Muhlen, M. G., Brault, N. D., Knudsen, S. M., Jiang, S. & Manalis, S. R. Label-free biomarker sensing in undiluted serum with suspended microchannel resonators. Anal. Chem. 82, 1905–1910 (2010). This work is notable for the high sensitivity (300 pM) and fast response time (1 min).

    CAS  Google Scholar 

  4. Backmann, N. et al. A label-free immunosensor array using single-chain antibody fragments. Proc. Natl Acad. Sci. USA 102, 14587–14952 (2005). The authors use a microcantilever with static-mode deflection to achieve a sensitivity of ≈ 1 nM, and include a detailed discussion of device functionalization.

    CAS  Google Scholar 

  5. Waggoner, P. S., Varshney, M. & Craighead, H. G. Detection of prostate specific antigen with nanomechanical resonators. Lab Chip 9, 3095–3099 (2009). The authors report femtomolar detection from serum through fluid phase capture and detection in vacuo.

    CAS  Google Scholar 

  6. Ibach, H. The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures. Surf. Sci. 29, 193–263 (1997).

    CAS  Google Scholar 

  7. Wu, G. et al. Bioassay of prostrate-specific antigen (PSA) using microcantilevers. Nature Biotechnol. 19, 856–860 (2001).

    CAS  Google Scholar 

  8. Fritz, J. et al. Translating biomolecular recognition into nanomechanics. Science 288, 316–318 (2000).

    CAS  Google Scholar 

  9. Mertens, J. et al. Label-free detection of DNA hybridization based on hydration-induced tension in nucleic acid films. Nature Nanotech. 3, 302–307 (2008).

    Google Scholar 

  10. Zhang, J. et al. Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA. Nature Nanotech. 1, 214–220 (2006).

    CAS  Google Scholar 

  11. Ndieyira, J. W. et al. Nanomechanical detection of antibiotic-mucopeptide binding in a model for superbug drug resistance. Nature Nanotech. 3, 691–696 (2008).

    CAS  Google Scholar 

  12. Braun, T. et al. Conformational change of bacteriorhodopsin quantitatively monitored by microcantilever sensors. Biophys. J. 90, 2970–2977 (2006).

    CAS  Google Scholar 

  13. Shu, W. et al. DNA molecular motor driven micromechanical cantilever arrays. J. Am. Chem. Soc. 127, 17054–17060 (2005).

    CAS  Google Scholar 

  14. Wee, K. W. et al. Novel electrical detection of label-free disease marker proteins using peizoresistive self-sensing micro-cantilevers. Biosens. Bioelectron. 20, 1932–1938 (2005).

    CAS  Google Scholar 

  15. Rasmussen, P. A., Thaysen, J., Hansen, O., Eriksen, S. C. & Boisen, A., Optimised cantilever biosensor with piezoresistive read-out. Ultramicroscopy 97, 371–376 (2003).

    CAS  Google Scholar 

  16. Stoney, G. G. The tension of metallic films deposited by electrolysis. Proc. R. Soc. Lond. A 82, 172–175 (1909).

    CAS  Google Scholar 

  17. Sader, J. E. Surface stress induced deflections of cantilever plates with applications to the atomic force microscopy: Rectangular plates. J. Appl. Phys. 89, 2911–2921 (2001).

    CAS  Google Scholar 

  18. Gfeller, K. Y., Nugaeva, N. & Hegner, M. Micromechanical oscillators as rapid biosensor for the detection of active growth of Escherichia coli. Biosens. Bioelectron. 21, 528–533 (2005).

    CAS  Google Scholar 

  19. Gfeller, K. Y., Nugaeva, N. & Hegner, M. Rapid biosensor for detection of antibiotic-selective growth of Escherichia coli. Appl. Environ. Microbiol. 71, 2626–2631 (2005). The growth and detection of E. coli was performed using dynamic mode microcantilevers: the sensitivity was 100 cells and the detection times were less than one hour.

    CAS  Google Scholar 

  20. Yang, Y. T., Callegari, C., Feng, X. L., Ekinci, K. L. & Roukes, M. L. Zeptogram-scale nanomechanical mass sensing. Nano Lett. 6, 583–586 (2006).

    CAS  Google Scholar 

  21. Jensen, K., Kim, K. & Zettl, A. An atomic-resolution nanomechanical mass sensor. Nature Nanotech. 3, 533–537 (2008).

    CAS  Google Scholar 

  22. Gupta, A., Akin, D. & Bashir, R. Single virus particle mass detection using microresonators with nanoscale thickness. Appl. Phys. Lett. 84, 1976–1978 (2004).

    CAS  Google Scholar 

  23. Ilic, B., Yang, Y. & Craighead, H. G. Virus detection using nanoelectromechanical devices. Appl. Phys. Lett. 85, 2604–2606 (2004).

    CAS  Google Scholar 

  24. Park, K. et al. Measurement of adherent cell mass and growth. Proc. Natl Acad. Sci. USA 107, 20691–20696 (2010).

    CAS  Google Scholar 

  25. Park, K. et al. Concentration, growth and mass measurements of mammalian cells on silicon cantilevers. Lab Chip 8, 1034–1041 (2008).

    CAS  Google Scholar 

  26. Sader, J. E. Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. J. Appl. Phys. 84, 64–76 (1998).

    CAS  Google Scholar 

  27. Van Eysden, C. A. & Sader, J. E. Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope: Arbitrary mode order. J. Appl. Phys. 101, 044908 (2007). This paper includes a detailed theoretical analysis of the viscous damping of fluid-immersed cantilevers.

    Google Scholar 

  28. Braun, T. et al. Micromechanical mass sensors for biomolecular detection in a physiological environment. Phys. Rev. E 72, 031907 (2005). The authors use dynamic mode mass detection with microcantilevers to achieve a resolution of 7 ng.

    Google Scholar 

  29. Ghatkesar, M. K. et al. Higher modes of vibration increase mass sensitivity in nanomechanical microcantilevers. Nanotechnology 18, 445502 (2007).

    Google Scholar 

  30. Hwang, K. S. et al. In-situ quantitative analysis of a prostate-specific antigen (PSA) using a nanomechanical PZT cantilever. Lab Chip 4, 547–552 (2004).

    CAS  Google Scholar 

  31. Lee, J. H., Kim, T. S. & Yoon, K. H. Effect of mass and stress on resonant frequency shift of functionalized Pb(Zr0.52Ti0.48)O3 thin film microcantilever for the detection of C-reactive protein. Appl. Phys. Lett. 84, 3187–3189 (2004).

    CAS  Google Scholar 

  32. McFarland, A. W., Poggi, M. A., Doyle, M. J., Bottomley, L. A. & Colton, J. S. Influence of surface stress on the resonance behavior of microcantilevers. Appl. Phys. Lett. 87, 053505 (2005).

    Google Scholar 

  33. Lu, P., Lee, H. P., Lu, C. & O'Shea, S. J. Surface stress effects on the resonance properties of cantilever sensors. Phys. Rev. B 72, 085405 (2005).

    Google Scholar 

  34. Lachut, M. J. & Sader, J. E. Effect of surface stress on the stiffness of cantilever plates. Phys. Rev. Lett. 99, 206102 (2007).

    Google Scholar 

  35. Tamayo, J., Ramos, D., Mertens, J. & Calleja, M. Effect of the adsorbate stiffness on the resonance response of microcantilever sensors. Appl. Phys. Lett. 89, 224104 (2006).

    Google Scholar 

  36. Gupta, A. K. et al. Anomalous resonance in a nanomechanical biosensor. Proc. Natl Acad. Sci. USA 103, 13362–13367 (2006).

    CAS  Google Scholar 

  37. Burg, T. P. et al. Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature 446, 1066–1069 (2007).

    CAS  Google Scholar 

  38. Barton, R. A. et al. Fabrication of a nanomechanical mass sensor containing a nanofluidic channel. Nano Lett. 10, 2058–2063 (2010).

    CAS  Google Scholar 

  39. Zuniga, C., Rinaldi, M. & Piazza, G. High frequency piezoelectric resonant nanochannels for bio-sensing applications in liquid environment. IEEE Sensors 2010 52–55 (November 2010).

    Google Scholar 

  40. Burg, T. P., Sader, J. E. & Manalis, S. R. Nonmonotonic energy dissipation in microfluidic resonators. Phys. Rev. Lett. 102, 228103 (2009).

    Google Scholar 

  41. Sader, J. E., Burg, T. P. & Manalis, S. R. Energy dissipation in microfluidic beam resonators. J. Fluid. Mech. 650, 215–250 (2010).

    CAS  Google Scholar 

  42. Bryan, A. K., Goranov, A., Amon, A. & Manalis, S. R. Measurement of mass, density, and volume during the cell cycle of yeast. Proc. Natl Acad. Sci. USA 107, 999–1004 (2010).

    CAS  Google Scholar 

  43. Godin, M. et al. Using buoyant mass to measure the growth of single cells. Nature Methods 7, 387–390 (2010).

    CAS  Google Scholar 

  44. Knudsen, S. M., von Muhlen, M. G., Schauer, D. B. & Manalis, S. R. Determination of bacterial antibiotic resistance based on osmotic shock response. Anal. Chem. 81, 7087–7090 (2009).

    CAS  Google Scholar 

  45. Arlett, J. L. & Roukes, M. L. Ultimate sensitivity limits for mass sensing with hollow micro/nanochannel resonators. J. Appl. Phys. 108, 084701 (2010).

    Google Scholar 

  46. Kim, N., Kim, D-K. & Cho, Y-J. Development of indirect-competitive quartz crystal microbalance immunosensor for C-reactive protein. Sensor. Actuat. B-Chem. 143, 444–448 (2009).

    Google Scholar 

  47. Kurosawa, S. et al. Evaluation of a high-affinity QCM immunosensor using antibody fragmentation and 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer. Biosens. Bioelectron. 20, 1134–1139 (2004).

    CAS  Google Scholar 

  48. Weizmann, Y., Patolsky, F. & Willner, I. Amplified detection of DNA and analysis of single-base mismatches by the catalyzed deposition of gold on Au-nanoparticles. Analyst 126, 1502–1504 (2001).

    CAS  Google Scholar 

  49. Armani, A. M., Kulkarni, R. P., Fraser, S. E. Flagan, R. C. & Vahala, K. J. Label-free, single-molecule detection with optical microcavities. Science 314, 783–787 (2007).

    Google Scholar 

  50. Arnold, S., Shopova, S. I. & Holler, S. Whispering gallery mode bio-sensor for label-free detection of single molecules: thermo-optic vs. reactive mechanism. Opt. Express 18, 281–287 (2010).

    CAS  Google Scholar 

  51. Washburn, A. L., Luchansky, M. S., Bowman, A. L. & Bailey, R. C. Quantitative, label-free detection of five protein biomarkers using muliplexed arrays of silicon photonic microring resonators. Anal. Chem. 82, 69–72 (2010). The authors report quantitative, parallel detection from five protein mixtures.

    CAS  Google Scholar 

  52. Luchansky, M. S. & Bailey, R. C. Silicon photonic microring resonators for quantitative cytokine detection and T-cell secretion anslysis. Anal. Chem. 82, 1975–1981 (2010).

    CAS  Google Scholar 

  53. Stern, E. et al. Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 445, 519–522 (2007).

    CAS  Google Scholar 

  54. Zheng, G., Gao, X. P. A. & Lieber, C. M. Frequency domain detection of biomolecules using silicon nanowire biosensors. Nano Lett. 10, 3179–3183 (2010).

    CAS  Google Scholar 

  55. Bunimovich, Y. L. et al. Quantitative real-time measurement of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution. J. Am. Chem. Soc. 128, 16323–16331 (2006).

    CAS  Google Scholar 

  56. Gao, X. P. A., Zheng, G. & Lieber, C. M. Subthreshold regime has the optimal sensitivity for nanowire FET biosensors. Nano Lett. 10, 547–552 (2010).

    CAS  Google Scholar 

  57. Squires, T. M., Messinger, R. J. & Manalis, S. R. Making it stick: Convection reaction and diffusion in surface-based biosensors. Nature. Biotechnol. 26, 417–426 (2008). This review article contains a detailed kinetics analysis that is relevant to all biosensors.

    CAS  Google Scholar 

  58. Rich, R. & Myszka, D. G. Advances in surface plasmon resonance biosensor analysis. Curr. Opin. Biotechnol. 11, 54–61 (2000).

    CAS  Google Scholar 

  59. Skivesen, N. et al. Photonic-crystal waveguide biosensor. Opt. Express 15, 3169–3176 (2007).

    CAS  Google Scholar 

  60. Yao, X. et al. Sub-attomole oligonucleotide and p53 cDNA determinations via a high-resolution surface plasmon resonance combined with oligonucleotide-capped gold nanoparticle signal amplification. Anal. Biochem. 354, 220–228 (2006).

    CAS  Google Scholar 

  61. Cesaro-Tadic, S. et al. High-sensitivity miniaturized immunoassays for tumor necrosis factor α using microfluidic systems. Lab Chip 4, 563–569 (2004).

    CAS  Google Scholar 

  62. Fan, R. et al. Integrated barcode chips for rapid, multiplexed analysis of proteins in microliter quantities of blood. Nature Biotechnol. 26, 1373–1378 (2008).

    CAS  Google Scholar 

  63. Diercks, A. H. et al. A microfluidic device for multiplexed protein detection in nano-liter volumes. Anal. Biochem. 386, 30–35 (2009).

    CAS  Google Scholar 

  64. Harris, R. & Lohr, K. N. Screening for Prostate Cancer: An Update of the Evidence for the U. S. Preventitive Services Task Force. Ann. Intern. Med. 137, 915–916 (2002). See also: http://en.wikipedia.org/wiki/Prostate_specific_antigen

    Google Scholar 

  65. Carrano, J. Chemical and Biological Sensor Standards Study (DARPA, 2005). Available at http://go.nature.com/JNBVGN

    Google Scholar 

  66. Steward, C. C. & Steward, S. J. in Cytometry 3rd edn, Vol. 63 (ed. Darzynkiewicz, Z.) 223 (2001).

    Google Scholar 

  67. Konopka, K. & Neilands, J. B. Effect of serum albumin on siderophore-mediated utilization of transferring iron. Biochem. 10, 2122–2127 (1984).

    Google Scholar 

  68. Nair, P. R. & Alam, M. A. Theory of “selectivity” of label-free nanobiosensors: A geometro-physical perspective. J. Appl. Phys. 107, 064701 (2010).

  69. Fan, R. et al. Integrated barcode chips for rapid, multiplexed analysis of proteins in microliter quantities of blood. Nature Biotechnol. 26, 1373–1378 (2008).

    CAS  Google Scholar 

  70. Stern, E. et al. Label-free biomarker detection from whole blood. Nature Nanotech. 5, 138–142 (2010). A two-stage detection approach leads to significantly enhanced specificity, enabling subpicomolar detection in whole blood with nanoribbon sensors.

    CAS  Google Scholar 

  71. Hirrlinger, J., Moeller, H., Kirchoff, F. & Dringen, R. Expression of multidrug resistance proteins (Mrps) in astrocytes of the mouse brain: A single cell RT-PCR study. Neurochem. Res. 30, 1237–1244 (2005).

    CAS  Google Scholar 

  72. Goluch, E. D. et al. A biobarcode assay for on-chip attomolar-sensitivity protein detection. Lab Chip 6, 1293–1299 (2006).

    CAS  Google Scholar 

  73. Grell, M., Wajant, H., Zimmermann, G. & Scheurich, P. The type 1 receptor (CD120a) is the high-affinity receptor for solube tumor necrosis factor. Proc. Natl Acad. Sci. USA 95, 570–575 (1998).

    CAS  Google Scholar 

  74. Florin, E. L., Moy, V. T. &. Gaub, H. E. Intermolecular forces and energies between ligands and receptors. Science 264, 415–417 (1994).

    CAS  Google Scholar 

  75. Fritz, J., Katopodis, A. G., Kolbinger, F. & Anselmetti, D. Force-mediated kinetics of single P-selectin/ligand complexes observed by atomic force microscopy. Proc. Natl Acad. Sci. USA 95, 12283–12288 (1998).

    CAS  Google Scholar 

  76. Merkel, R., Nassoy, P., Leung, A., Ritchie, K. & Evans, E. Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature 397, 50–53 (1999).

    CAS  Google Scholar 

  77. Wiita, A. P. et al. Probing the chemistry of thioredoxin catalysis with force. Nature 450, 124–127 (2007).

    CAS  Google Scholar 

  78. Fernandez, J. M. & Hongbin, L. Force spectroscopy monitors the folding trajectory of a single protein. Science 303, 1674–1678 (2004).

    CAS  Google Scholar 

  79. Tan, J. L. et al. Cells lying on a bed of microneedles: An approach to isolate mechanical force. Proc. Natl Acad. Sci. USA 100, 1484–1489 (2003).

    CAS  Google Scholar 

  80. Guck, J. et al. Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys. J. 88, 3689–3698 (2005).

    CAS  Google Scholar 

  81. Suresh, S. Biomechanics and biophysics of cancer cells. Acta Mater. 55, 3989–4014 (2007).

    CAS  Google Scholar 

  82. Lee, W., Fon, W., Axelrod, B. W. & Roukes, M. L. High-sensitivity microfluidic calorimeters for biological and chemical applications. Proc. Natl Acad. Sci. USA 106, 15225–15230 (2009).

    CAS  Google Scholar 

  83. Cross, S. E., Jin, Y-S., Rao, J. & Gimzewski, J. K. Nanomechanical analysis of cells from cancer patients. Nature Nanotech. 2, 780–783 (2007).

    CAS  Google Scholar 

  84. Brujić, J., Hermans, R. I., Walther, K. A. & Fernandez, J. M. Single-molecule force spectroscopy reveals signatures of glassy dynamics in the energy landscape of ubiquitin. Nature Phys. 2, 282–286 (2006).

    Google Scholar 

  85. Evans, E., Leung, A., Heinrich, V. & Zhu, Ch. Mechanical switching and coupling between two dissociation pathways in a P-selectin adhesion bond. Proc. Natl Acad. Sci. USA 101, 11281–11286 (2004).

    CAS  Google Scholar 

  86. Robert, P., Benoliel, A-M., Pierres, A. & Bongrand, P. What is the biological relevance of the specific bond properties revealed by single-molecule studies? J. Mol. Recognit. 20, 432–447 (2007).

    CAS  Google Scholar 

  87. Zhou, J. et al. Unbinding of the streptavidin-biotin complex by atomic force microscopy: a hybrid simulation study. J. Chem. Phys. 125, 104905 (2006).

    Google Scholar 

  88. Evans, E. A. & Calderwood, D. A. Forces and bond dynamics in cell adhesion. Science 316, 1148–1153 (2007).

    CAS  Google Scholar 

  89. Liphardt, J., Onoa, B., Smith, S. B., Tinoco, I. Jr & Bustamante, C. Reversible unfolding of single RNA molecules by mechanical force. Science 292, 733–737 (2001).

    CAS  Google Scholar 

  90. Krieg, M. et al. Tensile forces govern germ-layer organization in zebrafish. Nature Cell Biol. 10, 429–436 (2008).

    CAS  Google Scholar 

  91. Fierro, F. A. et al. BCR/ABL expression of myeloid progenitors increases beta1-integrin mediated adhesion to stromal cells. J. Mol. Biol. 377, 1082–1093 (2008).

    CAS  Google Scholar 

  92. Wjcikiewicz, E. et al. LFA-1 binding destabilizes the JAM-A homophilic interaction during leukocyte transmigration. Biophys. J. 96, 285–293 (2009).

    Google Scholar 

  93. Friedrichs, J., Helenius, J. & Müller, D. J. Stimulated single-cell force spectroscopy to quantify cell adhesion receptor crosstalk. Proteomics 10, 1455–1462 (2010).

    CAS  Google Scholar 

  94. Fon, W. C., Schwab, K. C., Worlock, J. M. & Roukes, M. L. Nanoscale, phonon-coupled calorimetry with sub-attojoule/Kelvin resolution. Nano Lett. 5, 1968–1971 (2005).

    CAS  Google Scholar 

  95. Ekinci, K. L. Electromechanical transducers at the nanoscale: actuation and sensing of motion in nanoelectromechanical systems (NEMS). Small 1, 786–797 (2005).

    CAS  Google Scholar 

  96. Carr, D. W., Evoy, S., Sekaric, L., Craighead, H. G. & Parpia, J. M. Measurement of mechanical resonance and losses in nanometer scale silicon wires. Appl. Phys. Lett. 75, 920–922 (1999).

    CAS  Google Scholar 

  97. Kouh, T., Karabacak, D., Kim, D. H. & Ekinci, K. L. Diffraction effects in optical interferometric displacement detection in nanoelectromechanical systems. Appl. Phys. Lett. 86, 013106 (2005).

    Google Scholar 

  98. Keeler, B. E. N., Carr, D. W., Sullivan, J. P., Friedmann, T. A. & Wendt, J. R. Experimental demonstration of a laterally deformable optical nanoelectromechanical system grating transducer. Opt. Lett. 29, 1182–1184 (2004).

    Google Scholar 

  99. Li, M., Pernice, W. H. P. & Tang, H. X. Broadband all-photonic transduction of nanocantilevers. Nature Nanotech. 4, 377–382 (2009).

    CAS  Google Scholar 

  100. Li, M. et al. Harnessing optical forces in integrated photonic circuits. Nature 467, 480–484 (2008).

    Google Scholar 

  101. Truitt, P. A., Hertzberg, J. B., Huang, C. C., Ekinci, K. L. & Schwab, K. C. Efficient and sensitive capacitive readout of nanomechanical resonator arrays. Nano Lett. 7, 120–126 (2007).

    CAS  Google Scholar 

  102. Sampathkumar, A., Murray, T. W. & Ekinci, K. L. Photothermal operation of high frequency nanoelectromechanical systems. Appl. Phys. Lett. 88, 223104 (2006).

    Google Scholar 

  103. Verbridge, S. S., Bellan, L. M., Parpia, J. M. & Craighead, H. G. Optically driven resonance of nanoscale flexural oscillators in liquid. Nano Lett. 6, 2109–2114 (2006).

    CAS  Google Scholar 

  104. Bargatin, I., Kokinsky, I. & Roukes, M. L. Efficient electrothermal actuation of multiple modes of high-frequency nanoelectromechanical resonators. Appl. Phys. Lett. 90, 093116 (2007).

    Google Scholar 

  105. Seo, J. H. & Brand, O. High Q-factor in-plane-mode resonant microsensor platform for gaseous/liquid environment. J. Microelectromech. Syst. 17, 483–493 (2008).

    CAS  Google Scholar 

  106. Piazza, G., Stephanou, P. J. & Pisano, A. P. Piezoelectric aluminum nitride vibrating contour-mode MEMS resonators. J. Microelectromech. Syst. 15, 1406–1418 (2006).

    CAS  Google Scholar 

  107. Karabalin, R. B. et al. Piezoelectric nanoelectromechanical resonators based on aluminum nitride thin films. Appl. Phys. Lett. 95, 103111 (2009).

    Google Scholar 

  108. Bargatin, I., Myers, E. B., Arlett, J., Gudlewski, B. & Roukes, M. L. Sensitive detection of nanomechanical motion using piezoresistive signal downmixing. Appl. Phys. Lett. 86, 133109 (2005).

    Google Scholar 

  109. Harley, J. A. & Kenny, T. W. High-sensitivity piezoeresistive cantilevers under 1000Å thick. Appl. Phys. Lett. 75, 289–291 (1999).

    CAS  Google Scholar 

  110. Arlett, J. L., Maloney, J. R., Gudlewski, B., Muluneh, M. & Roukes, M. L. Self-sensing micro- and nanocantilevers with attonewton-scale force resolution. Nano Lett. 6, 1000–1006 (2006).

    CAS  Google Scholar 

  111. Harley, J. A. & Kenny, T. W. 1/f noise considerations for the design and process optimization of piezoresistive cantilevers. J. Microelectromech. Syst. 9, 226–235 (2000).

    Google Scholar 

  112. Li, M., Tang, H. X. & Roukes, M. L. Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nature Nanotech. 2, 114–120 (2007).

    CAS  Google Scholar 

  113. Nguyen, C. T-C. & Howe, R. T. An integrated CMOS micromechanical resonator high-Q oscillator. IEEE J. Solid-St. Circ. 34, 440–455 (1999).

    Google Scholar 

  114. Despont, M., Drechsler, U., Yu, R., Pogge, H. B. & Vettiger, P. Wafer-scale microdevice transfer/interconnect: its application in an AFM-based data-storage system. J. Microelectromech. Syst. 13, 895–901 (2004).

    CAS  Google Scholar 

  115. Thorsen, T., Maerkl, S. J. & Quake, S. R. Microfluidic large-scale integration. Science 298, 580–584 (2002).

    CAS  Google Scholar 

  116. Zhong, J. F. et al. A microfluidic processor for gene expression profiling of single human embryonic stem cells. Lab Chip 8, 68–74 (2008).

    CAS  Google Scholar 

  117. Gómez-Sjöberg, R., Leyrat, A. A., Pirone, D. M., Chen, C. S. & Quake, S. R. Versatile, fully automated, microfluidic cell culture system. Anal. Chem. 79, 8557–8563 (2007).

    Google Scholar 

  118. Mehta, A. I. et al. Biomarker amplification by serum carrier protein binding. Dis. Markers 19, 1–10 (2003).

    CAS  Google Scholar 

  119. Granger, J., Siddiqui, J., Copeland, S. & Remick, D. Albumin depletion of human plasma also removes low abundance proteins including the cytokines. Proteomics 5, 4713–4718 (2005).

    CAS  Google Scholar 

  120. Köster, S. et al. Drop-based microfluidic devices for encapsulation of single cells. Lab Chip 8, 1110–1115 (2008).

    Google Scholar 

  121. Pradines-Figueres, A. & Raetz, C. R. H. Processing and secretion of tumor necrosis factor α in endotoxin-treated Mono Mac 6 cells are dependent on phorbol myristate acetate. J. Biol. Chem. 267, 23261–23268 (1992).

    CAS  Google Scholar 

  122. Huber, F. et al. Analyzing gene expression using combined nanomechanical cantilever sensors. J. Phys.: Conf. Ser. 61, 450–453 (2007).

    CAS  Google Scholar 

  123. McKendry, R. et al. Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array. Proc. Natl Acad. Sci. USA 99, 9783–9788 (2002).

    CAS  Google Scholar 

  124. Huber, F., Hegner, M., Gerber, C., Güntherodt, H-J. & Lang, H. P. Label free analysis of transcription factors using microcantilever arrays. Biosens. Bioelectron. 21, 1599–1605 (2006).

    CAS  Google Scholar 

  125. Bietsch, A., Hegner, M., Lang, H. P. & Gerber, C. Inkjet deposition of alkanethiolate monolayers and DNA Oligonucleotides on gold: evaluation of spot uniformity by wet etching. Langmuir 20, 5119–5122 (2004).

    CAS  Google Scholar 

  126. Zhang, H., Lee, K. B., Li, Z. & Mirkin, C. A. Biofunctionalized nanoarrays of inorganic structures prepared by dip-pen nanolithography. Nanotechnology 14, 1113–1117 (2003).

    CAS  Google Scholar 

  127. Harper, J. C., Polsky, R., Dirk, S. M., Wheeler, D. R. & Brozik, S. M., Electroaddressable selective functionalization of electrode arrays: Catalytic NADH detection using ardyl diazonium modified gold electrodes. Electroanalysis 19, 1268–1274 (2007).

    CAS  Google Scholar 

  128. Zheng, G., Patolsky, F., Cui, Y., Wang, W. U. & Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nature Biotechnol. 23, 1294–1301 (2005).

    CAS  Google Scholar 

  129. Lipsitz, R. Diagnostics at home: Pregnancy tests. Sci. Amer. 283, 110–111 (November 2000).

    Google Scholar 

  130. Washburn, A. L., Gunn, L. C. & Bailey, R. C. Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators. Anal. Chem. 81, 9499–9506 (2009).

    CAS  Google Scholar 

  131. Viani, M. B. et al. Small cantilevers for force spectroscopy of single molecules. J. Appl. Phys. 86, 2258–2262 (1999).

    CAS  Google Scholar 

  132. Arlett, J. L. et al. BioNEMS: Nanomechanical systems for single-molecule biophysics. Lect. Notes Phys. 711, 241–270 (2007).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Defense Advanced Research Projects Agency (HR00110610043 and N66001-08-1-2043) and the Fondation pour la Recherche et l'Enseignement Superieur for support. M.L.R. acknowledges a Director's Pioneer Award from the National Institutes of Health (1DP1OD006924). We also thank P. Puget for many discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.L. Roukes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arlett, J., Myers, E. & Roukes, M. Comparative advantages of mechanical biosensors. Nature Nanotech 6, 203–215 (2011). https://doi.org/10.1038/nnano.2011.44

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.44

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing