Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Scalable nanostructured membranes for solid-oxide fuel cells

Abstract

The use of oxide fuel cells and other solid-state ionic devices in energy applications is limited by their requirement for elevated operating temperatures, typically above 800 °C (ref. 1). Thin-film membranes allow low-temperature operation by reducing the ohmic resistance of the electrolytes2. However, although proof-of-concept thin-film devices have been demonstrated3, scaling up remains a significant challenge because large-area membranes less than 100 nm thick are susceptible to mechanical failure. Here, we report that nanoscale yttria-stabilized zirconia membranes with lateral dimensions on the scale of millimetres or centimetres can be made thermomechanically stable by depositing metallic grids on them to function as mechanical supports. We combine such a membrane with a nanostructured dense oxide cathode to make a thin-film solid-oxide fuel cell that can achieve a power density of 155 mW cm–2 at 510 °C. We also report a total power output of more than 20 mW from a single fuel-cell chip. Our large-area membranes could also be relevant to electrochemical energy applications such as gas separation, hydrogen production and permeation membranes.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of constraints from KOH etch of silicon.
Figure 2: Image of a 4-inch wafer with grid-supported µSOFCs.
Figure 3: SEM micrographs of grid-supported µSOFCs.
Figure 4: In situ observation of grid morphology during fuel-cell testing and power performance curves.

References

  1. Singhal, S. C. Advances in solid oxide fuel cell technology. Solid State Ionics 135, 305–313 (2000).

    Article  CAS  Google Scholar 

  2. Steele, B. C. H. & Heinzel, A. Materials for fuel-cell technologies. Nature 414, 345–352 (2001).

    Article  CAS  Google Scholar 

  3. Evans, A., Bieberle-Hütter, A., Rupp, J. L. M. & Gauckler, L. J. Review on microfabricated micro-solid oxide fuel cell membranes. J. Power Sources 194, 119–129 (2009).

    Article  CAS  Google Scholar 

  4. Wachsman, E. D., Jayaweera, P., Krishnan, G. & Sanjurjo, A. Electrocatalytic reduction of NOx on La1–xAxB1–yB′yO3–δ: evidence of electrically enhanced activity. Solid State Ionics 136–137, 775–782 (2000).

    Article  Google Scholar 

  5. Clark, D. J., Losey, R. W. & Suitor, J. W. Separation of oxygen by using zirconia solid electrolyte membranes. Gas Separ. Purif. 6, 201–205 (1992).

    Article  CAS  Google Scholar 

  6. Riegel, J., Neumann, H. & Wiedenmann, H. M. Exhaust gas sensors for automotive emission control. Solid State Ionics 152–153, 783–800 (2002).

    Article  Google Scholar 

  7. Beckel, D. et al. Thin films for micro solid oxide fuel cells. J. Power Sources 173, 325–345 (2007).

    Article  CAS  Google Scholar 

  8. deSouza, S., Visco, S. J. & DeJonghe, L. C. Thin-film solid oxide fuel cell with high performance at low temperature. Solid State Ionics 98, 57–61 (1997).

    Article  CAS  Google Scholar 

  9. Chen, X., Wu, N. J., Smith, L. & Ignatiev, A. Thin-film heterostructure solid oxide fuel cells. Appl. Phys. Lett. 84, 2700–2702 (2004).

    Article  CAS  Google Scholar 

  10. Ignatiev, A., Chen, X., Wu, N. J., Lu, Z. G. & Smith, L. Nanostructured thin solid oxide fuel cells with high power density. Dalton Trans. 5501–5506 (2008).

  11. Jankowski, A. F., Hayes, J. P., Graff, R. T. & Morse, J. D. Micro-fabricated thin-film fuel cells for portable power requirements. Mater. Res. Soc. Symp. Proc. 730, V4.2 (2002).

    Google Scholar 

  12. Johnson, A. C., Lai, B. K., Xiong, H. & Ramanathan, S. An experimental investigation into micro-fabricated solid oxide fuel cells with ultra-thin La0.6Sr0.4Co0.8Fe0.2O3 cathodes and yttria-doped zirconia electrolyte films. J. Power Sources 186, 252–260 (2009).

    Article  CAS  Google Scholar 

  13. Johnson, A. C., Baclig, A., Harburg, D. V., Lai, B. K. & Ramanathan, S. Fabrication and electrochemical performance of thin-film solid oxide fuel cells with large area nanostructured membranes. J. Power Sources 195, 1149–1155 (2010).

    Article  CAS  Google Scholar 

  14. Lai, B. K., Xiong, H., Tsuchiya, M., Johnson, A. C. & Ramanathan, S. Microstructure and microfabrication considerations for self-supported on-chip ultra-thin micro-solid oxide fuel cell membranes. Fuel Cells 9, 699–710 (2009).

    Article  CAS  Google Scholar 

  15. Lai, B. K., Kerman, K. & Ramanathan, S. On the role of ultra-thin oxide cathode synthesis on the functionality of micro-solid oxide fuel cells: structure, stress engineering and in situ observation of fuel cell membranes during operation. J. Power Sources 195, 5185–5196 (2010).

    Article  CAS  Google Scholar 

  16. Tsuchiya, M., Lai, B. K., Johnson, A. C. & Ramanathan, S. Photon-assisted synthesis of ultra-thin yttria-doped zirconia membranes: structure, variable temperature conductivity and micro-fuel cell devices. J. Power Sources 195, 994–1000 (2010).

    Article  CAS  Google Scholar 

  17. Baertsch, C. D. et al. Fabrication and structural characterization of self-supporting electrolyte membranes for a micro solid-oxide fuel cell. J. Mater. Res. 19, 2604–2615 (2004).

    Article  CAS  Google Scholar 

  18. Yamamoto, N. et al. Nonlinear thermomechanical design of microfabricated thin plate devices in the post-buckling regime. J. Micromech. Microeng. 20, 035027 (2010).

    Article  Google Scholar 

  19. Muecke, U. P. et al. Micro solid oxide fuel cells on glass ceramic substrates. Adv. Funct. Mater. 18, 3158–3168 (2008).

    Article  CAS  Google Scholar 

  20. Bieberle-Hütter, A. et al. A micro-solid oxide fuel cell system as battery replacement. J. Power Sources 177, 123–130 (2008).

    Article  Google Scholar 

  21. Huang, H. et al. High-performance ultrathin solid oxide fuel cells for low-temperature operation. J. Electrochem. Soc. 154, B20–B24 (2007).

    Article  CAS  Google Scholar 

  22. Su, P. C., Chao, C. C., Shim, J. H., Fasching, R. & Prinz, F. B. Solid oxide fuel cell with corrugated thin film electrolyte. Nano Lett. 8, 2289–2292 (2008).

    Article  CAS  Google Scholar 

  23. Shim, J. H., Chao, C. C., Huang, H. & Prinz, F. B. Atomic layer deposition of yttria-stabilized zirconia for solid oxide fuel cells. Chem. Mater. 19, 3850–3854 (2007).

    Article  CAS  Google Scholar 

  24. Quinn, D. J., Wardle, B. & Spearing, S. M. Residual stress and microstructure of as-deposited and annealed, sputtered yttria-stabilized zirconia thin films. J. Mater. Res. 23, 609–618 (2008).

    Article  CAS  Google Scholar 

  25. Garbayo, I. et al. Electrical characterization of thermomechanically stable YSZ membranes for micro solid oxide fuel cells applications. Solid State Ionics 181, 322–331 (2010).

    Article  CAS  Google Scholar 

  26. Freund, L. B. & Suresh, S. Thin Film Materials (Cambridge Univ. Press, 2003).

  27. Tang, Y., Stanley, K., Wu, J., Ghosh, D. & Zhang, J. Design consideration of micro thin film solid-oxide fuel cells. J. Micromech. Microeng. 15, S185–S192 (2005).

    Article  CAS  Google Scholar 

  28. Srikar, V. T., Turner, K. T., Ie, T. Y. A. & Spearing, S. M. Structural design considerations for micromachined solid-oxide fuel cells. J. Power Sources 125, 62–69 (2004).

    Article  CAS  Google Scholar 

  29. Hsieh, H. T., Chiu, C. W., Tsao, T., Jiang, F. K. & Su, G. D. J. Low-actuation-voltage MEMS for 2-D optical switches. J. Lightwave Technol. 24, 4372–4379 (2006).

    Article  Google Scholar 

  30. Gibson, L. J. & Ashby, M. F. Cellular Solids: Structure and Properties 2nd edn (Cambridge Univ. Press, 1997).

  31. Ziebart, V., Paul, O. & Baltes, H. Strongly buckled square micromachined membranes. J. Microelectromech. S 8, 423–432 (1999).

    Article  Google Scholar 

  32. Rey-Mermet, S. & Muralt, P. Solid oxide fuel cell membranes supported by nickel grid anode. Solid State Ionics 179, 1497–1500 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank V. Chun, A. Johnson and K. Kerman for stimulating discussions. The work was supported in part by the National Science Foundation (NSF; grant no. CCF-0926148). This work was performed in part at the Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Infrastructure Network (NNIN), which is supported by NSF award no. ECS-0335765.

Author information

Authors and Affiliations

Authors

Contributions

M.T. planned, designed and conducted the experiments and data analysis, in collaboration with B.K.L. and S.R. M.T. and S.R. wrote the manuscript. All authors discussed the results and their interpretation.

Corresponding author

Correspondence to Masaru Tsuchiya.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1382 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tsuchiya, M., Lai, BK. & Ramanathan, S. Scalable nanostructured membranes for solid-oxide fuel cells. Nature Nanotech 6, 282–286 (2011). https://doi.org/10.1038/nnano.2011.43

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.43

This article is cited by

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research