Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Controlling electrical percolation in multicomponent carbon nanotube dispersions

Abstract

Carbon nanotube reinforced polymeric composites can have favourable electrical properties, which make them useful for applications such as flat-panel displays and photovoltaic devices. However, using aqueous dispersions to fabricate composites with specific physical properties requires that the processing of the nanotube dispersion be understood and controlled while in the liquid phase. Here, using a combination of experiment and theory, we study the electrical percolation of carbon nanotubes introduced into a polymer matrix, and show that the percolation threshold can be substantially lowered by adding small quantities of a conductive polymer latex. Mixing colloidal particles of different sizes and shapes (in this case, spherical latex particles and rod-like nanotubes) introduces competing length scales that can strongly influence the formation of the system-spanning networks that are needed to produce electrically conductive composites. Interplay between the different species in the dispersions leads to synergetic or antagonistic percolation, depending on the ease of charge transport between the various conductive components.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Multicomponent SWCNT dispersions prepared using a latex-based route.
Figure 2: Conductivity versus conductive latex loading.
Figure 3: Overall concentration of rods and spheres (φr + φs) at the percolation threshold as a function of fractional sphere composition xs = φs(φs + φr).
Figure 4: Percolating networks of hard rods and spheres obtained by MC computer simulations.
Figure 5: Normalized critical volume fraction at the percolation threshold of the rods, φp(φs)/φp(0), as a function of sphere volume fraction φs.

Similar content being viewed by others

References

  1. Grossiord, N., Loos, J., Regev, O. & Koning, C. E. Toolbox for dispersing carbon nanotubes into polymers to get conductive nanocomposites. Chem. Mater. 18, 1089–1099 (2006).

    Article  CAS  Google Scholar 

  2. Cao, Q. & Rogers, J. A. Ultrathin films of single-walled carbon nanotubes for electronics and sensors: a review of fundamental and applied aspects. Adv. Mater. 21, 29–53 (2009).

    Article  CAS  Google Scholar 

  3. Moniruzzaman, M. & Winey, K. I. Polymer nanocomposites containing carbon nanotubes. Macromolecules 39, 5194–5205 (2006).

    Article  CAS  Google Scholar 

  4. Grossiord, N. et al. On the influence of the processing conditions on the performance of electrically conductive carbon nanotube/polymer nanocomposites. Polymer 49, 2866–2872 (2008).

    Article  CAS  Google Scholar 

  5. Polizu, S., Savadogo, O., Poulin, P. & Yahia, L. Applications of carbon nanotubes-based biomaterials in biomedical nanotechnology. J. Nanosci. Nanotechnol. 6, 1883–1904 (2006).

    Article  CAS  Google Scholar 

  6. Grossiord, N., Loos, J. & Koning, C. E. Strategies for dispersing carbon nanotubes in highly viscous polymers. J. Mater. Chem. 15, 2349–2352 (2005).

    Article  CAS  Google Scholar 

  7. Dresselhaus, M. S., Dresselhaus, G. & Eklund, P. C. Science of Fullerenes and Carbon Nanotubes (Academic, 1996).

    Google Scholar 

  8. Grossiord, N. et al. High-conductivity polymer nanocomposites obtained by tailoring the characteristics of carbon nanotube fillers. Adv. Funct. Mater. 18, 3226–3234 (2008).

    Article  CAS  Google Scholar 

  9. Hermant, M. C., Verhulst, M., Kyrylyuk, A. V., Klumperman, B. & Koning, C. E. The incorporation of single-walled carbon nanotubes into polymerised high internal phase emulsions to create foams with a low percolation threshold. Compos. Sci. Tech. 69, 656–662 (2009).

    Article  CAS  Google Scholar 

  10. Lebedkin, S., Hennrich, F., Skipa, T. & Kappes, M. M. Near-infrared photoluminescence of single-walled carbon nanotubes prepared by the laser vaporization method. J. Phys. Chem. B 107, 1949–1956 (2003).

    Article  CAS  Google Scholar 

  11. Regev, O., El Kati, P. N. B., Loos, J. & Koning, C. E. Preparation of conductive nanotube–polymer composites using latex technology. Adv. Mater. 16, 248–251 (2004).

    Article  CAS  Google Scholar 

  12. Dufresne, A. et al. Processing and characterization of carbon nanotube/poly(styrene-co-butyl acrylate) nanocomposites. J. Mater. Sci. 37, 3915–3923 (2002).

    Article  CAS  Google Scholar 

  13. Hermant, M. C., Klumperman, B., Kyrylyuk, A. V., van der Schoot, P. & Koning, C. E. Lowering the percolation threshold of single-walled carbon nanotubes using polystyrene/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) blends. Soft Matt. 5, 878–885 (2009).

    Article  CAS  Google Scholar 

  14. Vigolo, B., Coulon, C., Maugey, M., Zakri, C. & Poulin, P. An experimental approach to the percolation of sticky nanotubes. Science 309, 920–923 (2005).

    Article  CAS  Google Scholar 

  15. Kyrylyuk, A. V. & van der Schoot, P. Continuum percolation of carbon nanotubes in polymeric and colloidal media. Proc. Natl Acad. Sci. USA 105, 8221–8226 (2008).

    Article  CAS  Google Scholar 

  16. Stauffer, D. & Aharony, A. Introduction to Percolation Theory (Taylor & Francis, 1992).

    Google Scholar 

  17. Torquato, S. Random Heterogeneous Materials: Microstructure and Macroscopic Properties (Springer, 2002).

    Book  Google Scholar 

  18. Coniglio, A., De Angelis, V. & Forlani, A. Pair connectedness and cluster size. J. Phys. A 10, 1123–1139 (1977).

    Article  Google Scholar 

  19. Chiew, Y. C. & Glandt, E. D. Percolation behaviour of permeable and of adhesive spheres. J. Phys. A 16, 2599–2608 (1983).

    Article  Google Scholar 

  20. Bug, A. L. R., Safran, S. A. & Webman, I. Continuum percolation of permeable objects. Phys. Rev. B 33, 4716–4724 (1986).

    Article  CAS  Google Scholar 

  21. Balberg, I., Anderson, C. H., Alexander, S. & Wagner, N. Excluded volume and its relation to the onset of percolation. Phys. Rev. B 30, 3933–3943 (1984).

    Article  Google Scholar 

  22. Schilling, T., Jungblut, S. & Miller, M. A. Depletion-induced percolation in networks of nanorods. Phys. Rev. Lett. 98, 108303 (2007).

    Article  CAS  Google Scholar 

  23. Chaterjee, A. P. Connectedness percolation in fluids of persistent chains. J. Chem. Phys. 117, 10888–10893 (2002).

    Article  Google Scholar 

  24. Kyrylyuk, A. V., Wouterse, A. & Philipse, A. P. Random packing of rod–sphere mixtures simulated by mechanical contraction. AIP Conf. Proc. 1145, 211–214 (2009).

    Article  CAS  Google Scholar 

  25. Vinches, C., Salome, L., Coulon, C. & Carmona, F. Percolation in ternary composites: threshold position and critical behaviour. J. Phys. France 51, 2505–2513 (1990).

    Article  CAS  Google Scholar 

  26. Fakhri, N., Tsyboulski, D. A., Cognet, L., Weisman, R. B. & Pasquali, M. Diameter-dependent bending dynamics of single-walled carbon nanotubes in liquids. Proc. Natl Acad. Sci. USA 106, 14219–14223 (2009).

    Article  CAS  Google Scholar 

  27. Hansen, J.-P. & McDonald, I. R. Theory of Simple Liquids (Academic, 1986).

    Google Scholar 

  28. Otten, R. H. J. & van der Schoot, P. Continuum percolation of polydisperse nanofillers. Phys. Rev. Lett. 103, 225704 (2009).

    Article  Google Scholar 

  29. Friedel, B. et al. Effects of layer thickness and annealing of PEDOT:PSS layers in organic photodetectors. Macromolecules 42, 6741–6747 (2009).

    Article  CAS  Google Scholar 

  30. White, S. I., DiDonna, B. A., Mu, M., Lubensky, T. C. & Winey, K. I. Simulations and electrical conductivity of percolated networks of finite rods with various degrees of axial alignment. Phys. Rev. B 79, 024301 (2009).

    Article  Google Scholar 

  31. Aguilar, J. O., Bautista-Quijano, J. R. & Avilés, F. Influence of carbon nanotube clustering on the electrical conductivity of polymer composite films. eXPRESS Polymer Lett. 106, 14219–14223 (2009).

    Google Scholar 

Download references

Acknowledgements

The work of A.V.K. and M.C.H. forms part of the research programme of the Dutch Polymer Institute (DPI, project no. 592). T.S. acknowledges the Deutsche Forschungsgemeinschaft (DFG) for financial support within the Emmy Noether Programme.

Author information

Authors and Affiliations

Authors

Contributions

A.V.K. and P.v.d.S. wrote the paper. A.V.K. performed the theoretical calculations and analysed the data. M.C.H. and B.K. carried out the experiments. T.S. carried out the M.C. computer simulations. C.E.K. and P.v.d.S. conceived and supervised the project. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Andriy V. Kyrylyuk.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 396 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kyrylyuk, A., Hermant, M., Schilling, T. et al. Controlling electrical percolation in multicomponent carbon nanotube dispersions. Nature Nanotech 6, 364–369 (2011). https://doi.org/10.1038/nnano.2011.40

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.40

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing