Abstract
The performance and scaling of graphene-based electronics1 is limited by the quality of contacts between the graphene and metal electrodes2,3,4. However, the nature of graphene–metal contacts remains incompletely understood. Here, we use atomic force microscopy to measure the temperature distributions at the contacts of working graphene transistors with a spatial resolution of ∼10 nm (refs 5, 6, 7, 8), allowing us to identify the presence of Joule heating9,10,11, current crowding12,13,14,15,16 and thermoelectric heating and cooling17. Comparison with simulation enables extraction of the contact resistivity (150–200 Ω µm2) and transfer length (0.2–0.5 µm) in our devices; these generally limit performance and must be minimized. Our data indicate that thermoelectric effects account for up to one-third of the contact temperature changes, and that current crowding accounts for most of the remainder. Modelling predicts that the role of current crowding will diminish and the role of thermoelectric effects will increase as contacts improve.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Critical current fluctuations in graphene Josephson junctions
Scientific Reports Open Access 06 October 2021
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Schwierz, F. Graphene transistors. Nature Nanotech. 5, 487–496 (2010).
Nagashio, K., Nishimura, T., Kita, K. & Toriumi, A. Systematic investigation of the intrinsic channel properties and contact resistance of monolayer and multilayer graphene field-effect transistor. Jpn J. Appl. Phys. 49, 051304 (2010).
Nagashio, K., Nishimura, T., Kita, K. & Toriumi, A. Contact resistivity and current flow path at metal/graphene contact. Appl. Phys. Lett. 97, 143514 (2010).
Khomyakov, P. A., Starikov, A. A., Brocks, G. & Kelly, P. J. Nonlinear screening of charges induced in graphene by metal contacts. Phys. Rev. B 82, 115437 (2010).
Varesi, J. & Majumdar, A. Scanning Joule expansion microscopy at nanometer scales. Appl. Phys. Lett. 72, 37–39 (1998).
Majumdar, A. & Varesi, J. Nanoscale temperature distributions measured by scanning Joule expansion microscopy. J. Heat Transfer 120, 297–305 (1998).
Cannaerts, M., Buntinx, D., Volodin, A. & Van Haesendonck, C. Calibration of a scanning Joule expansion microscope (SJEM). Appl. Phys. A 72, S67–S70 (2001).
Gurrum, S. P., King, W. P., Joshi, Y. K. & Ramakrishna, K. Size effect on the thermal conductivity of thin metallic films investigated by scanning Joule expansion microscopy. J. Heat Transfer 130, 082403 (2008).
Pop, E. Energy dissipation and transport in nanoscale devices. Nano Res. 3, 147–169 (2010).
Dorgan, V. E., Bae, M-H. & Pop, E. Mobility and saturation velocity in graphene on SiO2 . Appl. Phys. Lett. 97, 082112 (2010).
Bae, M-H., Ong, Z-Y., Estrada, D. & Pop, E. Imaging, simulation, and electrostatic control of power dissipation in graphene devices. Nano Lett. 10, 4787–4793 (2010).
Jackson, R. & Graham, S. Specific contact resistance at metal/carbon nanotube interfaces. Appl. Phys. Lett. 94, 012109 (2009).
Lan, C. et al. Measurement of metal/carbon nanotube contact resistance by adjusting contact length using laser ablation. Nanotechnology 19, 125703 (2008).
Franklin, A. D. & Chen, Z. Length scaling of carbon nanotube transistors. Nature Nanotech. 5, 858–862 (2010).
Schroder, D. K. Semiconductor Material and Device Characterization (Wiley, 2006).
Chieh, Y. S., Perera, A. K. & Krusius, J. P. Series resistance of silicided ohmic contacts for nanoelectronics. IEEE Trans. Electron. Dev. 39, 1882–1888 (1992).
DiSalvo, F. J. Thermoelectric cooling and power generation. Science 285, 703–706 (1999).
Schroder, D. K. & Babcock, J. A. Negative bias temperature instability: road to cross in deep submicron silicon semiconductor manufacturing. J. Appl. Phys. 94, 1–18 (2003).
Freitag, M., Chiu, H-Y., Steiner, M., Perebeinos, V. & Avouris, P. Thermal infrared emission from biased graphene. Nature Nanotech. 5, 497–501 (2010).
Xu, X., Gabor, N. M., Alden, J. S., van der Zande, A. M. & McEuen, P. L. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 10, 562–566 (2009).
Wei, P., Bao, W., Pu, Y., Lau, C. N. & Shi, J. Anomalous thermoelectric transport of Dirac particles in graphene. Phys. Rev. Lett. 102, 166808 (2009).
Zuev, Y. M., Chang, W. & Kim, P. Thermoelectric and magnetothermoelectric transport measurements of graphene. Phys. Rev. Lett. 102, 096807 (2009).
Checkelsky, J. G. & Ong, N. P. Thermopower and Nernst effect in graphene in a magnetic field. Phys. Rev. B 80, 081413 (2009).
Zhu, W., Perebeinos, V., Freitag, M. & Avouris, P. Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene. Phys. Rev. B 80, 235402 (2009).
International Technology Roadmap for Semiconductors (ITRS), http://public.itrs.net (2009).
Thompson, S. E. et al. In search of ‘Forever,’ continued transistor scaling one new material at a time. IEEE Trans. Semicond. Manuf. 18, 26–36 (2005).
Ishigami, M., Chen, J. H., Cullen, W. G., Fuhrer, M. S. & Williams, E. D. Atomic structure of graphene on SiO2 . Nano Lett. 7, 1643–1648 (2007).
Koh, Y. H., Bae, M.-H., Cahill, D. G. & Pop, E . Reliably counting atomic planes of few-layer graphene (n > 4). ACS Nano 5, 269–274 (2011).
Malard, L. M., Pimenta, M. A., Dresselhaus, G. & Dresselhaus, M. S. Raman spectroscopy in graphene. Phys. Rep. 473, 51–87 (2009).
Silvestrov, P. G. & Efetov, K. B. Charge accumulation at the boundaries of a graphene strip induced by a gate voltage: electrostatic approach. Phys. Rev. B 77, 155436 (2008).
Vasko, F. T. & Zozoulenko, I. V. Conductivity of a graphene strip: width and gate-voltage dependencies. Appl. Phys. Lett. 97, 092115 (2010).
Acknowledgements
This work was supported by the Air Force Office of Scientific Research MURI FA9550-08-1-0407, Office of Naval Research grants N00014-07-1-0767, N00014-09-1-0180 and N00014-10-1-0061, and the Air Force Young Investigator Program (E.P.).
Author information
Authors and Affiliations
Contributions
K.L.G. performed measurements and simulations. M-H.B. fabricated devices and assisted with simulations. E.P. implemented the computational model and physical interpretation, with help from F.L., while E.P. and W.P.K. conceived the experiments. All authors discussed the results. K.L.G., E.P. and W.P.K. co-wrote the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 1785 kb)
Supplementary information
Supplementary movie (WMV 1573 kb)
Rights and permissions
About this article
Cite this article
Grosse, K., Bae, MH., Lian, F. et al. Nanoscale Joule heating, Peltier cooling and current crowding at graphene–metal contacts. Nature Nanotech 6, 287–290 (2011). https://doi.org/10.1038/nnano.2011.39
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nnano.2011.39
This article is cited by
-
Progress of microscopic thermoelectric effects studied by micro- and nano-thermometric techniques
Frontiers of Physics (2022)
-
Robust, Breathable and Flexible Smart Textiles as Multifunctional Sensor and Heater for Personal Health Management
Advanced Fiber Materials (2022)
-
Sub-10-nm graphene nanoribbons with atomically smooth edges from squashed carbon nanotubes
Nature Electronics (2021)
-
Critical current fluctuations in graphene Josephson junctions
Scientific Reports (2021)
-
Studies of the Dirac Point in a GO/P3HT Nanocomposite Thin-Film Phototransistor
Journal of Electronic Materials (2020)