A DNA-based molecular motor that can navigate a network of tracks


Synthetic molecular motors can be fuelled by the hydrolysis1,2,3,4 or hybridization5,6,7,8,9,10,11 of DNA. Such motors can move autonomously1,2,3,4,7,11 and programmably12, and long-range transport has been observed on linear tracks13,14. It has also been shown that DNA systems can compute8,15,16,17,18. Here, we report a synthetic DNA-based system that integrates long-range transport and information processing. We show that the path of a motor through a network of tracks containing four possible routes can be programmed using instructions that are added externally or carried by the motor itself. When external control is used we find that 87% of the motors follow the correct path, and when internal control is used 71% of the motors follow the correct path. Programmable motion will allow the development of computing networks, molecular systems that can sort and process cargoes according to instructions that they carry, and assembly lines19,20 that can be reconfigured dynamically in response to changing demands.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Programmed route on branching tracks.
Figure 2: Externally controlled DNA motor on a single-layer track.
Figure 3: Controlled motion on a two-layer track.
Figure 4: Internally programmed motion on a single-layer track.


  1. 1

    Yin, P., Yan, H., Daniell, X. G., Turberfield, A. J. & Reif, J. H. A unidirectional DNA walker that moves autonomously along a DNA track. Angew. Chem. Int. Ed. 43, 4906–4911 (2004).

    CAS  Article  Google Scholar 

  2. 2

    Tian, Y., He, Y., Peng, Y. & Mao, C. A DNA enzyme that walks processively and autonomously along a one-dimensional track. Angew. Chem. Int. Ed. 44, 4355–4358 (2005).

    CAS  Article  Google Scholar 

  3. 3

    Bath, J., Green, S. J. & Turberfield, A. J. A free-running DNA motor powered by a nicking enzyme. Angew. Chem. Int. Ed. 44, 4358–4361 (2005).

    CAS  Article  Google Scholar 

  4. 4

    Pei, R. et al. Behaviour of polycatalytic assemblies in a substrate-displaying matrix. J. Am. Chem. Soc. 128, 12693–12699 (2006).

    CAS  Article  Google Scholar 

  5. 5

    Shin, J-S. & Pierce, N. A. A synthetic DNA walker for molecular transport. J. Am. Chem. Soc. 126, 10834–10835 (2004).

    CAS  Article  Google Scholar 

  6. 6

    Sherman, W. B. & Seeman, N. C. A precisely controlled DNA biped walking device. Nano Lett. 4, 1203–1207 (2004).

    CAS  Article  Google Scholar 

  7. 7

    Venkataraman, S., Dirks, R. M., Rothemund, P. W. K., Winfree, E. & Pierce, N. A. An autonomous polymerization motor powered by DNA hybridization. Nature Nanotech. 2, 490–494 (2007).

    Article  Google Scholar 

  8. 8

    Yin, P., Choi, H. M., Calvert, C. R. & Pierce, N. A. Programming biomolecular self-assembly pathways. Nature 451, 318–322 (2008).

    CAS  Article  Google Scholar 

  9. 9

    Green, S. J., Bath, J. & Turberfield, A. J. Coordinated chemomechanical cycles: a mechanism for autonomous molecular motion. Phys. Rev. Lett. 101, 238101 (2008).

    CAS  Article  Google Scholar 

  10. 10

    Bath, J. Green, S. J., Allen, K. E. & Turberfield, A. J. Mechanism for a directional, processive and reversible DNA motor. Small 5, 1513–1516 (2009).

    CAS  Article  Google Scholar 

  11. 11

    Omabegho, T., Sha, R. & Seeman, N. C. A bipedal Brownian motor with coordinated legs. Science 324, 67–71 (2009).

    CAS  Article  Google Scholar 

  12. 12

    Muscat, R. A., Bath, J. & Turberfield, A. J. A programmable molecular robot. Nano Lett. 11, 982–987 (2011).

    CAS  Article  Google Scholar 

  13. 13

    Lund, K. et al. Molecular robots guided by prescriptive landscapes. Nature 465, 206–210 (2010).

    CAS  Article  Google Scholar 

  14. 14

    Wickham, S. F. J. et al. Direct observation of stepwise movement of a synthetic molecular transporter. Nature Nanotech. 6, 166–169 (2011).

    CAS  Article  Google Scholar 

  15. 15

    Stojanovic, M. N., Mitchell, T. E. & Stefanovic, D. Deoxyribozyme-based logic gates. J. Am. Chem. Soc. 124, 3555–3561 (2002).

    CAS  Article  Google Scholar 

  16. 16

    Zhang, D. Y., Turberfield, A. J., Yurke, B. & Winfree, E. Engineering entropy-driven reactions and networks catalyzed by DNA. Science 318, 1121–1125 (2007).

    CAS  Article  Google Scholar 

  17. 17

    Benenson, Y., Gil, B., Ben-Dor, U., Adar, R. & Shapiro, E. An autonomous molecular computer for logical control of gene expression. Nature 429, 423–429 (2004).

    CAS  Article  Google Scholar 

  18. 18

    Qian, L. & Winfree, E. Scaling up digital circuit computation with DNA strand displacement cascades. Science 332, 1196–1201 (2011).

    CAS  Article  Google Scholar 

  19. 19

    He, Y. & Liu, D. R. Autonomous multistep organic synthesis in a single isothermal solution mediated by a DNA walker. Nature Nanotech. 5, 778–782 (2010).

    CAS  Article  Google Scholar 

  20. 20

    Gu, H., Chao, J., Xiao, S. J. & Seeman, N. C. A proximity-based programmable DNA nanoscale assembly line. Nature 465, 202–205 (2010).

    CAS  Article  Google Scholar 

  21. 21

    Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    CAS  Article  Google Scholar 

  22. 22

    Yurke, B. & Mills, A. P. Jr. Using DNA to power nanostructures. Genet. Program. Evolvable Mach. 4, 111–122 (2003).

    Article  Google Scholar 

  23. 23

    Turberfield, A. J. et al. DNA fuel for free-running nanomachines. Phys. Rev. Lett. 90, 118102 (2003).

    CAS  Article  Google Scholar 

  24. 24

    Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009).

    CAS  Article  Google Scholar 

  25. 25

    Endo, M., Sugita, T., Katsuda, Y., Hidaka, K. & Sugiyama, H. Programmed-assembly system using DNA jigsaw pieces. Chem. Eur. J. 16, 5362–5368 (2010).

    CAS  Article  Google Scholar 

  26. 26

    Rajendran, A., Endo, M., Katsuda, Y., Hidaka, K. & Sugiyama H. Programmed two-dimensional self-assembly of multiple DNA origami jigsaw pieces. ACS Nano 5, 665–671 (2011).

    CAS  Article  Google Scholar 

  27. 27

    Liu, W., Zhong, H., Wang, R. & Seeman, N. C. Crystalline two-dimensional DNA-origami arrays. Angew. Chem. Int. Ed. 50, 264–267 (2011).

    CAS  Article  Google Scholar 

  28. 28

    Petri, C. A. Kommunikation mit Automaten, Schriften des IIM Nr. 3 (Institut fur Instrumentelle Mathematik, 1962).

  29. 29

    Krieger, M. J. B., Billeter, J. B. & Keller, L. Ant-like task allocation and recruitment in cooperative robots. Nature 406, 992–995 (2000).

    CAS  Article  Google Scholar 

Download references


This work was supported by the Engineering and Physical Sciences Research Council (EP/G037930/1), the Clarendon Fund, the Oxford–Australia Scholarship Fund, the CREST of JST and a Grant-in-Aid for Science Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information




Experiments were designed by S.W. with input from J.B. and A.J.T. Ensemble fluorescence experiments were carried out by S.W. in the laboratory of A.J.T. AFM experiments were carried out by M.E., Y.K. and K.H. in the laboratory of H.S. The manuscript was written by S.W., J.B., H.S. and A.J.T.

Corresponding authors

Correspondence to Hiroshi Sugiyama or Andrew J. Turberfield.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2353 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wickham, S., Bath, J., Katsuda, Y. et al. A DNA-based molecular motor that can navigate a network of tracks. Nature Nanotech 7, 169–173 (2012). https://doi.org/10.1038/nnano.2011.253

Download citation

Further reading