Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Atomically localized plasmon enhancement in monolayer graphene

Abstract

Plasmons in graphene1,2,3,4 can be tuned by using electrostatic gating or chemical doping5,6,7, and the ability to confine plasmons in very small regions could have applications in optoelectronics8,9, plasmonics10,11 and transformation optics12. However, little is known about how atomic-scale defects influence the plasmonic properties of graphene. Moreover, the smallest localized plasmon resonance observed in any material to date has been limited to around 10 nm (refs 13, 14, 15). Here, we show that surface plasmon resonances in graphene can be enhanced locally at the atomic scale. Using electron energy-loss spectrum imaging in an aberration-corrected scanning transmission electron microscope, we find that a single point defect can act as an atomic antenna in the petahertz (1015 Hz) frequency range, leading to surface plasmon resonances at the subnanometre scale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Atomic structure of a point defect complex in monolayer graphene.
Figure 2: STEM-EELS line scan across a point defect in monolayer graphene.
Figure 3: Plasmon map of monolayer graphene with a single substitutional silicon atom.
Figure 4: Plasmon map of monolayer graphene with two adjacent substitutional silicon atoms far away from multilayer regions.

Similar content being viewed by others

References

  1. Geim, A. K. Graphene: status and prospects. Science 324, 1530–1534 (2009).

    Article  CAS  Google Scholar 

  2. Abergel, D. S. L., Apalkov, V., Berashevich, J., Ziegler, K. & Chakraborty, T. Properties of graphene: a theoretical perspective. Adv. Phys. 59, 261–482 (2010).

    Article  CAS  Google Scholar 

  3. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS  Google Scholar 

  4. Berger, C. et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 19912–19916 (2004).

    Article  CAS  Google Scholar 

  5. Mak, K. F. et al. Measurement of the optical conductivity of graphene. Phys. Rev. Lett. 101, 196405 (2008).

    Article  Google Scholar 

  6. Chen, C-F. et al. Controlling inelastic light scattering quantum pathways in graphene. Nature 471, 617–620 (2011).

    Article  CAS  Google Scholar 

  7. Wang, F. et al. Gate-variable optical transitions in graphene. Science 320, 206–209 (2008).

    Article  CAS  Google Scholar 

  8. Liu, M. et al. A graphene-based broadband optical modulator. Nature 474, 64–67 (2011).

    Article  CAS  Google Scholar 

  9. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nature Photon. 4, 611–622 (2010).

    Article  CAS  Google Scholar 

  10. Jablan, M., Buljan, H. & Soljacic, M. Plasmonics in graphene at infrared frequencies. Phys. Rev. B 80, 245435 (2009).

    Article  Google Scholar 

  11. Mishchenko, E. G., Shytov, A. V. & Silvestrov, P. G. Guided plasmons in graphene p–n junctions. Phys. Rev. Lett. 104, 156806 (2010).

    Article  CAS  Google Scholar 

  12. Vakil, A. & Engheta, N. Transformation optics using graphene. Science 332, 1291–1294 (2011).

    Article  CAS  Google Scholar 

  13. Maier, S. A. & Atwater, H. A. Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 98, 011101 (2005).

    Article  Google Scholar 

  14. Nelayah, J. et al. Mapping surface plasmons on a single metallic nanoparticle. Nature Phys. 3, 348–353 (2007).

    Article  CAS  Google Scholar 

  15. Bosman, M., Keast, V. J., Watanabe, M., Maaroof, A. I. & Cortie, M. B. Mapping surface plasmons at the nanometre scale with an electron beam. Nanotechnology 18, 165505 (2007).

    Article  Google Scholar 

  16. Theis, T. N. & Solomon, P. M. It's time to reinvent the transistor! Science 327, 1600–1601 (2010).

    Article  CAS  Google Scholar 

  17. McAulay, A. D. Optical Computer Architectures: The Application of Optical Concepts to Next Generation Computers (Wiley, 1991).

    Google Scholar 

  18. Caulfield, H. J. & Dolev, S. Why future supercomputing requires optics. Nature Photon. 4, 261–263 (2010).

    Article  CAS  Google Scholar 

  19. Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

    Article  CAS  Google Scholar 

  20. Ozbay, E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006).

    Article  CAS  Google Scholar 

  21. Stockman, M. I. Nanoplasmonics: the physics behind the applications. Phys. Today 64, 39–44 (2011).

    Article  Google Scholar 

  22. Hunt, J. A. & Williams, D. B. Electron energy-loss spectrum-imaging. Ultramicroscopy 38, 47–73 (1991).

    Article  CAS  Google Scholar 

  23. Krivanek, O. L. et al. Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464, 571–574 (2010).

    Article  CAS  Google Scholar 

  24. Gass, M. H. et al. Free-standing graphene at atomic resolution. Nature Nanotech. 3, 676–681 (2008).

    Article  CAS  Google Scholar 

  25. Yang, L., Deslippe, J., Park, C-H., Cohen, M. L. & Louie, S. G. Excitonic effects on the optical response of graphene and bilayer graphene. Phys. Rev. Lett. 103, 186802 (2009).

    Article  Google Scholar 

  26. Yang, L. Excitons in intrinsic and bilayer graphene. Phys. Rev. B 83, 085405 (2011).

    Article  Google Scholar 

  27. Muniz, R. A., Dahal, H. P., Balatsky, A. V. & Haas, S. Impurity-assisted nanoscale localization of plasmonic excitations in graphene. Phys. Rev. B 82, 081411 (2010).

    Article  Google Scholar 

  28. Bostwick, A. et al. Observation of plasmarons in quasi-freestanding doped graphene. Science 328, 999–1002 (2010).

    Article  CAS  Google Scholar 

  29. Koppens, F. H. L., Chang, D. E. & Javier Garcia de Abajo, F. Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett. 11, 3370–3377 (2011).

    Article  CAS  Google Scholar 

  30. Crommie, M. F., Lutz, C. P. & Eigler, D. M. Confinement of electrons to quantum corrals on a metal surface. Science 262, 218–220 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank B.S. Guiton, S.V. Kalinin, R.F. Klie, A.R. Lupini, and M.P. Oxley for helpful discussions and comments. This research was supported by the National Science Foundation (grant no. DMR-0938330; W.Z., J-C.I.); Oak Ridge National Laboratory's (ORNL) SHaRE User Facility (J.C.I.), which is sponsored by the Office of Basic Energy Sciences, US Department of Energy (DOE); the Office of Basic Energy Sciences, Materials Sciences and Engineering Division, US DOE (S.J.P., J.L., S.T.P.), DOE grant DE-FG02-09ER46554 (S.T.P.); and by the McMinn Endowment (S.T.P.) at Vanderbilt University. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US DOE (contract no. DE-AC02-05CH11231).

Author information

Authors and Affiliations

Authors

Contributions

W.Z, J.N., S.J.P. and J-C.I. conceived the experiments. W.Z. and J-C.I. designed and carried out the experiments, performed the data analysis, and co-wrote the paper. W.Z. performed the image simulations. J.L., S.T.P. and J-C.I. performed the first-principles calculations. J.N. provided the sample. S.J.P. initiated the aberration-corrected microscopy project at ORNL and provided advice regarding the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Wu Zhou or Juan-Carlos Idrobo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 20751 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, W., Lee, J., Nanda, J. et al. Atomically localized plasmon enhancement in monolayer graphene. Nature Nanotech 7, 161–165 (2012). https://doi.org/10.1038/nnano.2011.252

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.252

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing