Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits

Abstract

Deciphering the neuronal code—the rules by which neuronal circuits store and process information—is a major scientific challenge1,2. Currently, these efforts are impeded by a lack of experimental tools that are sensitive enough to quantify the strength of individual synaptic connections and also scalable enough to simultaneously measure and control a large number of mammalian neurons with single-cell resolution3,4. Here, we report a scalable intracellular electrode platform based on vertical nanowires that allows parallel electrical interfacing to multiple mammalian neurons. Specifically, we show that our vertical nanowire electrode arrays can intracellularly record and stimulate neuronal activity in dissociated cultures of rat cortical neurons and can also be used to map multiple individual synaptic connections. The scalability of this platform, combined with its compatibility with silicon nanofabrication techniques, provides a clear path towards simultaneous, high-fidelity interfacing with hundreds of individual neurons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: VNEA for interrogating neuronal networks.
Figure 2: Characterization of the VNEA/cell electrical interface.
Figure 3: Stimulation and recording of rat cortical neurons using a VNEA.
Figure 4: Identification of functional synaptic connectivity using a VNEA and a patch pipette.

Similar content being viewed by others

References

  1. Yuste, R. Circuit neuroscience: the road ahead. Front. Neurosci. 2, 6–9 (2008).

    Article  Google Scholar 

  2. Bock, D. D. et al. Network anatomy and in vivo physiology of visual cortical neurons. Nature 471, 177–182 (2011).

    Article  CAS  Google Scholar 

  3. Pine, J. A history of MEA development, in Advances in Network Electrophysiology (eds, Taketani, M. & Baudry, M.) 3–23 (Springer, 2006).

  4. Molleman, A. Patch Clamping (Wiley, 2003).

  5. Rolston, J. D., Gross, R. E. & Potter, S. M. A low-cost multielectrode system for data acquisition enabling real-time closed-loop processing with rapid recovery from stimulation artifacts. Front. Neuroeng. 2, 12–12 (2009).

    Article  Google Scholar 

  6. Voelker, M. & Fromherz, P. Signal transmission from individual mammalian nerve cell to field-effect transistor. Small 1, 206–210 (2005).

    Article  CAS  Google Scholar 

  7. Kim, D-H. et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nature Mater. 9, 511–517 (2010).

    Article  CAS  Google Scholar 

  8. Viventi, J. et al. A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology. Sci. Trans. Med. 2, 24ra22 (2010).

    Article  Google Scholar 

  9. Patolsky, F. et al. Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 313, 1100–1104 (2006).

    Article  CAS  Google Scholar 

  10. Eschermann, J. F. et al. Action potentials of HL-1 cells recorded with silicon nanowire transistors. Appl. Phys. Lett. 95, 083703 (2009).

    Article  Google Scholar 

  11. Wang, K., Fishman, H. A., Dai, H. & Harris, J. S. Neural stimulation with a carbon nanotube microelectrode array. Nano Lett. 6, 2043–2048 (2006).

    Article  CAS  Google Scholar 

  12. McKnight, T. E. et al. Resident neuroelectrochemical interfacing using carbon nanofiber arrays. J. Phys. Chem. B 110, 15317–15327 (2006).

    Article  CAS  Google Scholar 

  13. Hai, A. et al. Spine-shaped gold protrusions improve the adherence and electrical coupling of neurons with the surface of micro-electronic devices. J. R. Soc. Interface 6, 1153–1165 (2009).

    Article  CAS  Google Scholar 

  14. Hai, A., Shappir, J. & Spira, M. E. In-cell recordings by extracellular microelectrodes. Nature Methods 7, 200–202 (2010).

    Article  CAS  Google Scholar 

  15. Lau, A. Y., Hung, P. J., Wu, A. R. & Lee, L. P. Open-access microfluidic patch-clamp array with raised lateral cell trapping sites. Lab Chip 6, 1510–1515 (2006).

    Article  CAS  Google Scholar 

  16. Li, X., Klemic, K. G., Reed, M. A. & Sigworth, F. J. Microfluidic system for planar patch clamp electrode arrays. Nano Lett. 6, 815–819 (2006).

    Article  CAS  Google Scholar 

  17. Sigworth, F. J. & Klemic, K. G. Microchip technology in ion-channel research. IEEE Trans. Nanobiosci. 4, 121–127 (2005).

    Article  Google Scholar 

  18. Tian, B. et al. Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329, 830–834 (2010).

    Article  CAS  Google Scholar 

  19. Nikolenko, V., Poskanzer, K. E. & Yuste, R. Two-photon photostimulation and imaging of neural circuits. Nature Methods 4, 943–950 (2007).

    Article  CAS  Google Scholar 

  20. Peterka, D. S., Takahashi, H. & Yuste, R. Imaging voltage in neurons. Neuron 69, 9–21 (2011).

    Article  CAS  Google Scholar 

  21. Zhang, F. et al. Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nature Protoc. 5, 439–456 (2010).

    Article  CAS  Google Scholar 

  22. Shalek, A. K. et al. Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells. Proc. Natl Acad. Sci. USA 107, 1870–1875 (2010).

    Article  CAS  Google Scholar 

  23. Thomas, P. & Smart, T. G. HEK293 cell line: a vehicle for the expression of recombinant proteins. J. Pharmacol. Toxicol. Methods 51, 187–200 (2005).

    Article  CAS  Google Scholar 

  24. Rols, M. P. & Teissié, J. Electropermeabilization of mammalian cells. Quantitative analysis of the phenomenon. Biophys. J. 58, 1089–1098 (1990).

    Article  CAS  Google Scholar 

  25. Moulton, S. E. et al. Studies of double layer capacitance and electron transfer at a gold electrode exposed to protein solutions. Electrochim. Acta 49, 4223–4230 (2004).

    Article  CAS  Google Scholar 

  26. Dichter, M. A. Rat cortical neurons in cell culture: culture methods, cell morphology, electrophysiology, and synapse formation. Brain Res. 149, 279–293 (1978).

    Article  CAS  Google Scholar 

  27. Romijn, H. J., Mud, M. T., Habets, A. M. & Wolters, P. S. A quantitative electron microscopic study on synapse formation in dissociated fetal rat cerebral cortex in vitro. Brain Res. 227, 591–605 (1981).

    Article  CAS  Google Scholar 

  28. Kole, M. H. P. & Stuart, G. J. Is action potential threshold lowest in the axon? Nature Neurosci. 11, 1253–1255 (2008).

    Article  CAS  Google Scholar 

  29. Dan, Y. & Poo, M-M. Spike timing-dependent plasticity: from synapse to perception. Physiol. Rev. 86, 1033–1048 (2006).

    Article  Google Scholar 

  30. Mason, A., Nicoll, A. & Stratford, K. Synaptic transmission between individual pyramidal neurons of the rat visual cortex in vitro. J. Neurosci. 11, 72–84 (1991).

    Article  CAS  Google Scholar 

  31. Nicolelis, M. A. L. Brain–machine interfaces to restore motor function and probe neural circuits. Nature Rev. Neurosci. 4, 417–422 (2003).

    Article  CAS  Google Scholar 

  32. Arancio, O., Kandel, E. R. & Hawkins, R. D. Activity-dependent long-term enhancement of transmitter release by presynaptic 3′,5′-cyclic GMP in cultured hippocampal neurons. Nature 376, 74–80 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank J. MacArthur, E. Soucy, J. Greenwood, L. DeFeo, N. Sanjana, A. Dibos, G. Lau, B. Ilic, M. Metzler, L. Xie and E. Macomber for scientific discussions and technical assistance. The VNEA fabrication and characterization were performed in part at the Center for Nanoscale Systems at Harvard University. This work was supported by an NIH Pioneer award (5DP1OD003893-03) and an NSF EFRI award (EFRI-0835947).

Author information

Authors and Affiliations

Authors

Contributions

H.P. and J.T.R. conceived and designed the experiments. J.T.R., M.J., A.K.S. and R.S.G. performed experiments, and M-H.Y. helped with the experimental set-up and initiation of the experiments. J.T.R., M.J. and A.K.S. analysed the data. H.P. supervised the project. J.T.R., M.J., A.K.S. and H.P. wrote the manuscript, and all authors read and discussed it extensively.

Corresponding author

Correspondence to Hongkun Park.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 720 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, J., Jorgolli, M., Shalek, A. et al. Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nature Nanotech 7, 180–184 (2012). https://doi.org/10.1038/nnano.2011.249

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.249

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research