Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electrophoretically induced aqueous flow through single-walled carbon nanotube membranes

Abstract

Electrophoresis, the motion of charged species through liquids and pores under the influence of an external electric field, has been the principle source of chemical pumping for numerous micro- and nanofluidic device platforms. Recent measurements of ion currents through single or few carbon nanotube channels have yielded values of ion mobility that range from close to the bulk mobility to values that are two to seven orders of magnitude higher than the bulk mobility. However, these experiments cannot directly measure ion flux. Experiments on membranes that contain a large number of nanotube pores allow the ion current and ion flux to be measured independently. Here, we report that the mobilities of ions within such membranes are approximately three times higher than the bulk mobility. Moreover, the induced electro-osmotic velocities are four orders of magnitude faster than those measured in conventional porous materials. We also show that a nanotube membrane can function as a rectifying diode due to ionic steric effects within the nanotubes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of single-walled carbon nanotubes.
Figure 2: Highly efficient electro-osmotic flow in single-walled carbon nanotubes and the effect of pH.
Figure 3: Effects of ionic concentrations and species, and operation as a rectifying diode.
Figure 4: Operation as a rectifying diode with other ionic species.

Similar content being viewed by others

References

  1. Daugherty, N. A. Isoenzymes. J. Chem. Educ. 56, 442–447 (1979).

    Article  CAS  Google Scholar 

  2. Sarazin, C., Delaunay, N., Costanza, C., Eudes, V. & Gareil, P. Capillary electrophoresis analysis of inorganic cations in post-blast residue extracts applying a guanidinium-based electrolyte and bilayer-coated capillaries. Electrophoresis 32, 1282–1291 (2011).

    Article  CAS  Google Scholar 

  3. Kishi, T., Nakamura, J. & Arai, H. Application of capillary electrophoresis for the determination of inorganic ions in trace explosives and explosive residues. Electrophoresis 19, 3–5 (1998).

    Article  CAS  Google Scholar 

  4. Ferslew, K. E., Hagardorn, A. N., Harrison, M. T. & McCormick, W. F. Capillary ion analysis of potassium concentrations in human vitreous humor. Electrophoresis 19, 6–10 (1998).

    Article  CAS  Google Scholar 

  5. Mrestani, Y., Neubert, R., Schiewe, J. & Härtl, A. Application of capillary zone electrophoresis in cephalosporin analysis. J. Chromat. B 690, 321–326 (1997).

    Article  CAS  Google Scholar 

  6. Liu, H. et al. Translocation of single-stranded DNA through single-walled carbon nanotubes. Science 327, 64–67 (2010).

    Article  CAS  Google Scholar 

  7. Woolley, A. T. & Mathies, R. A. Ultra-high-speed DNA sequencing using capillary electrophoresis chips. Anal. Chem. 67, 3676–3680 (1995).

    Article  CAS  Google Scholar 

  8. Sinville, R. & Soper, S. A. High resolution DNA separations using microchip electrophoresis. J. Sep. Sci. 30, 1714–1728 (2007).

    Article  CAS  Google Scholar 

  9. Nagata, H., Tabuchi, M., Hirano, K. & Baba, Y. Microchip electrophoretic protein separation using electro-osmotic flow induced by dynamic sodium dodecyl sulfate-coating of uncoated plastic chips. Electrophoresis 26, 2247–2253 (2005).

    Article  CAS  Google Scholar 

  10. Sun, X., Su, X., Wu, J. & Hinds, B. J. Electrophoretic transport of biomolecules through carbon nanotube membranes. Langmuir 27, 3150–3156 (2011).

    Article  CAS  Google Scholar 

  11. Kraly, J. et al. Bioanalytical applications of capillary electrophoresis. Anal. Chem. 78, 4097–4110 (2006).

    Article  CAS  Google Scholar 

  12. Daiguji, H., Oka, Y. & Shirono, K. Nanofluidic diode and bipolar transistor. Nano Lett. 5, 2274–2280 (2005).

    Article  CAS  Google Scholar 

  13. Kalman, E. B., Vlassiouk, I. & Siwy, Z. S. Nanofluidic bipolar transistors. Adv. Mater. 20, 293–297 (2008).

    Article  CAS  Google Scholar 

  14. Scruggs, N. R., Robertson, J. W. F., Kasianowicz, J. J. & Migler, K. B. Rectification of the ionic current through carbon nanotubes by electrostatic assembly of polyelectrolytes. Nano Lett. 9, 3853–3859 (2009).

    Article  CAS  Google Scholar 

  15. Sun, L. & Crooks, R. M. Single carbon nanotube membranes: a well-defined model for studying mass transport through nanoporous materials. J. Am. Chem. Soc. 122, 12340–12345 (2000).

    Article  CAS  Google Scholar 

  16. Miller, S. A., Young, V. Y. & Martin, C. R. Electro-osmotic flow in template-prepared carbon nanotube membranes. J. Am. Chem. Soc. 123, 12335–12342 (2001).

    Article  CAS  Google Scholar 

  17. Hinds, B. J. et al. Aligned multiwalled carbon nanotube membranes. Science 303, 62–65 (2004).

    Article  CAS  Google Scholar 

  18. Holt, J. K. et al. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006).

    Article  CAS  Google Scholar 

  19. Majumder, M., Stinchcomb, A. & Hinds, B. J. Towards mimicking natural protein channels with aligned carbon nanotube membranes for active drug delivery. Life Sci. 86, 563–568 (2010).

    Article  CAS  Google Scholar 

  20. Majumder, M., Chopra, N., Andrews, R. & Hinds, B. J. Nanoscale hydrodynamics: enhanced flow in carbon nanotubes. Nature 438, 44 (2005).

    Article  CAS  Google Scholar 

  21. Majumder, M. et al. Enhanced electrostatic modulation of ionic diffusion through carbon nanotube membranes by diazonium grafting chemistry. J. Membr. Sci. 316, 89–96 (2008).

    Article  CAS  Google Scholar 

  22. Majumder, M., Zhan, X., Andrews, R. & Hinds, B. J. Voltage gated carbon nanotube membranes. Langmuir 23, 8624–8631 (2007).

    Article  CAS  Google Scholar 

  23. Fornasiero, F. et al. Ion exclusion by sub-2-nm carbon nanotube pores. Proc. Natl Acad. Sci. USA 105, 17250–17255 (2008).

    Article  CAS  Google Scholar 

  24. Lee, C. Y., Choi, W., Han, J-H. & Strano, M. S. Coherence resonance in a single-walled carbon nanotube ion channel. Science 329, 1320–1324 (2010).

    Article  CAS  Google Scholar 

  25. Wu, J. et al. Programmable transdermal drug delivery of nicotine using carbon nanotube membranes. Proc. Natl Acad. Sci. USA 107, 11698–11702 (2010).

    Article  CAS  Google Scholar 

  26. Sanip, S. M. et al. Gas separation properties of functionalized carbon nanotubes mixed matrix membranes. Sep. Purif. Technol. 78, 208–213 (2011).

    Article  CAS  Google Scholar 

  27. Kim, S., Jinschek, J. R., Chen, H., Sholl, D. S. & Marand, E. Scalable fabrication of carbon nanotube/polymer nanocomposite membranes for high flux gas transport. Nano Lett. 7, 2806–2811 (2007).

    Article  CAS  Google Scholar 

  28. Choi, W., Lee, C. Y., Ham, M-H., Shimizu, S. & Strano, M. S. Dynamics of simultaneous, single ion transport through two single-walled carbon nanotubes: observation of a three-state system. J. Am. Chem. Soc. 133, 203–205 (2010).

    Article  Google Scholar 

  29. Wu, J., Gerstandt, K., Majumder, M., Zhan, X. & Hinds, B. J. Highly efficient electro-osmotic flow through functionalized carbon nanotube membranes. Nanoscale 3, 3321–3328 (2011).

    Article  CAS  Google Scholar 

  30. Qi, H., Qian, C. & Liu, J. Synthesis of high-purity few-walled carbon nanotubes from ethanol/methanol mixture. Chem. Mater. 18, 5691–5695 (2006).

    Article  CAS  Google Scholar 

  31. Qi, H., Qian, C. & Liu, J. Synthesis of uniform double-walled carbon nanotubes using iron disilicide as catalyst. Nano Lett. 7, 2417–2421 (2007).

    Article  CAS  Google Scholar 

  32. Qian, C. et al. Fabrication of small diameter few-walled carbon nanotubes with enhanced field emission property. J. Nanosci. Nanotechnol. 6, 1346–1349 (2006).

    Article  CAS  Google Scholar 

  33. Dechadilok, P. & Deen, W. M. Hindrance factors for diffusion and convection in pores. Ind. Eng. Chem. Res. 45, 6953–6959 (2006).

    Article  CAS  Google Scholar 

  34. Tu, C-H., Wang, H-L. & Wang, X-L. Study on transmembrane electrical potential of nanofiltration membranes in KCl and MgCl2 solutions. Langmuir 26, 17656–17664 (2010).

    Article  CAS  Google Scholar 

  35. Majumder, M., Chopra, N. & Hinds, B. J. Mass transport through carbon nanotube membranes in three different regimes: ionic diffusion and gas and liquid flow. ACS Nano 5, 3867–3877 (2011).

    Article  CAS  Google Scholar 

  36. Bings, N. H., Bogaerts, A. & Broekaert, J. A. C. Atomic spectroscopy: a review. Anal. Chem. 82, 4653–4681 (2010).

    Article  CAS  Google Scholar 

  37. Komaromy-Hiller, G. Flame, flameless, and plasma spectroscopy. Anal. Chem. 71, 338–342 (1999).

    Article  Google Scholar 

  38. Gupta, A. Localized, low-voltage electro-osmotic pumping across nanoporous membranes. Appl. Phys. Lett. 91, 094101 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank J. Goldsmith, Xin Su and Xin Zhan for constructive discussions. This work was supported by NIDA (5R01DA018822-05) and DARPA (W911NF-09-1-0267). Critical infrastructure was provided by the University of Kentucky Center for Nanoscale Science and Engineering. J.L. and H.Z. acknowledge support from Unidym Inc. and the Center for the Environmental Implications of NanoTechnology (which is funded by the NSF and the EPA under an NSF cooperative agreement (EF-0830093)).

Author information

Authors and Affiliations

Authors

Contributions

H.Z. synthesized and characterized the single-walled nanotubes. J.W. fabricated the membrane and performed the experiments. K.G. helped to measure the samples using ICP-AES. B.J.H. and J.L. designed and supervised the experiments. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Bruce J. Hinds.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, J., Gerstandt, K., Zhang, H. et al. Electrophoretically induced aqueous flow through single-walled carbon nanotube membranes. Nature Nanotech 7, 133–139 (2012). https://doi.org/10.1038/nnano.2011.240

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.240

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing