Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Atomic-scale magnetometry of distant nuclear spin clusters via nitrogen-vacancy spin in diamond

Abstract

The detection of single nuclear spins is an important goal in magnetic resonance spectroscopy1,2. Optically detected magnetic resonance can detect single nuclear spins that are strongly coupled to an electron spin3,4,5,6,7,8,9, but the detection of distant nuclear spins that are only weakly coupled to the electron spin has not been considered feasible. Here, using the nitrogen–vacancy centre in diamond3,4,5,6,7,8 as a model system, we numerically demonstrate that it is possible to detect two or more distant nuclear spins that are weakly coupled to a centre electron spin if these nuclear spins are strongly bonded to each other in a cluster. This cluster will stand out from other nuclear spins by virtue of characteristic oscillations imprinted onto the electron spin decoherence profile10,11, which become pronounced under dynamical decoupling control12. Under many-pulse dynamical decoupling, the centre electron spin coherence can be used to measure nuclear magnetic resonances of single molecules. This atomic-scale magnetometry should improve the performance of magnetic resonance spectroscopy for applications in chemical, biological, medical and materials research13,14, and could also have applications in solid-state quantum computing3,4,5,6,7,8.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: NV centre spin decoherence due to nuclear spin pair dynamics in diamond.
Figure 2: Fingerprint features of nuclear spin dimers.
Figure 3: Double-blind numerical experiment for identifying a hidden dimer.
Figure 4: Nuclear magnetic resonances of single molecules.

References

  1. Rugar, D., Budakian, R., Mamin, H. J. & Chui, B. W. Single spin detection by magnetic resonance force microscopy. Nature 430, 329–332 (2004).

    CAS  Article  Google Scholar 

  2. Degen, C. L., Poggio, M., Mamin, H. J., Rettner, C. T. & Rugar, D. Nanoscale magnetic resonance imaging. Proc. Natl Acad. Sci. USA 106, 1313–1317 (2009).

    CAS  Article  Google Scholar 

  3. Jelezko, F. et al. Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Phys. Rev. Lett. 93, 130501 (2004).

    CAS  Article  Google Scholar 

  4. Childress, L. et al. Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 314, 281–285 (2006).

    CAS  Article  Google Scholar 

  5. Gurudev Dutt, M. V. et al. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316, 1312–1316 (2007).

    CAS  Article  Google Scholar 

  6. Neumann, P. et al. Multipartite entanglement among single spins in diamond. Science 320, 1326–1329 (2008).

    CAS  Article  Google Scholar 

  7. Jiang, L. et al. Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae. Science 326, 267–272 (2009).

    CAS  Article  Google Scholar 

  8. Neumann, P. et al. Single-shot readout of a single nuclear spin. Science 329, 542–544 (2010).

    CAS  Article  Google Scholar 

  9. Fu, K. M. C., Ladd, T. D., Santori, C. & Yamamoto, Y. Optical detection of the spin state of a single nucleus in silicon. Phys. Rev. B 69, 125306 (2004).

    Article  Google Scholar 

  10. Maze, J. R., Taylor, J. M. & Lukin, M. D. Electron spin decoherence of single nitrogen-vacancy defects in diamond. Phys. Rev. B 78, 094303 (2008).

    Article  Google Scholar 

  11. Yang, W. & Liu, R. B. Quantum many-body theory of qubit decoherence in a finite-size spin bath. Phys. Rev. B 78, 085315 (2008).

    Article  Google Scholar 

  12. Viola, L., Knill, E. & Lloyd, S. Dynamical decoupling of open quantum systems. Phys. Rev. Lett. 82, 2417–2421 (1999).

    CAS  Article  Google Scholar 

  13. Fu, C. C. et al. Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc. Natl Acad. Sci. USA 104, 727–732 (2007).

    CAS  Article  Google Scholar 

  14. Chao, J. I. et al. Nanometre-sized diamond particle as a probe for biolabeling. Biophys. J. 93, 2199–2208 (2007).

    CAS  Article  Google Scholar 

  15. Kennedy, T. A., Colton, J. S., Butler, J. E., Linares, R. C. & Doering, P. J. Long coherence times at 300 K for nitrogen-vacancy center spins in diamond grown by chemical vapor deposition. Appl. Phys. Lett. 83, 4190–4192 (2003).

    CAS  Article  Google Scholar 

  16. Gaebel, T. et al. Room-temperature coherent coupling of single spins in diamond. Nature Phys. 2, 408–413 (2006).

    CAS  Article  Google Scholar 

  17. Gruber, A. et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276, 2012–2014 (1997).

    CAS  Article  Google Scholar 

  18. Weber, J. R. et al. Quantum computing with defects. Proc. Natl Acad. Sci. USA 107, 8513–8518 (2010).

    CAS  Article  Google Scholar 

  19. Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008).

    CAS  Article  Google Scholar 

  20. Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008).

    CAS  Article  Google Scholar 

  21. Taylor, J. M. et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nature Phys. 4, 810–816 (2008).

    CAS  Article  Google Scholar 

  22. Witzel, W. M., de Sousa, R. & Das Sarma, S. Quantum theory of spectral-diffusion-induced electron spin decoherence. Phys. Rev. B 72, 161306 (2005).

    Article  Google Scholar 

  23. Yao, W., Liu, R. B. & Sham, L. J. Theory of electron spin decoherence by interacting nuclear spins in a quantum dot. Phys. Rev. B 74, 195301 (2006).

    Article  Google Scholar 

  24. Uhrig, G. S. Keeping a quantum bit alive by optimized π-pulse sequences. Phys. Rev. Lett. 98, 100504 (2007).

    Article  Google Scholar 

  25. Takahashi, S., Hanson, R., van Tol, J., Sherwin, M. S. & Awschalom, D. D. Quenching spin decoherence in diamond through spin bath polarization. Phys. Rev. Lett. 101, 047601 (2008).

    Article  Google Scholar 

  26. Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nature Mater. 8, 383–387 (2009).

    CAS  Article  Google Scholar 

  27. Anthony, T. R., Banholzer, W. F. & Fleischer, J. F. Thermal diffusivity of isotopically enriched 12C diamond. Phys. Rev. B 42, 1104–1111 (1990).

    CAS  Article  Google Scholar 

  28. de Lange, G., Wang, Z. H., Ristè, D., Dobrovitski, V. V. & Hanson, R. Universal dynamical decoupling of a single solid-state spin from a spin bath. Science 330, 60–63 (2010).

    CAS  Article  Google Scholar 

  29. Ryan, C. A., Hodges, J. S. & Cory, D. G. Robust decoupling techniques to extend quantum coherence in diamond. Phys. Rev. Lett. 105, 200402 (2010).

    CAS  Article  Google Scholar 

  30. Cywiński, Ł., Lutchyn, R. M., Nave, C. P. & Das Sarma, S. How to enhance dephasing time in superconducting qubits. Phys. Rev. B 77, 174509 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Hong Kong Research Grants Council/General Research Fund (CUHK402410 and CUHK402207), The Chinese University of Hong Kong Focused Investments Scheme, Hong Kong Research Grants Council (HKU10/CRF/08) and National Natural Science Foundation of China Project 11028510.

Author information

Authors and Affiliations

Authors

Contributions

R.B.L. conceived the idea. R.B.L. and N.Z. designed the project, formulated the theory, and wrote the paper. N.Z., J.L.H. and S.W.H. calculated electron spin decoherence. J.T.K.W. did the first-principles calculation of the hyperfine constants. All authors read and commented on the manuscript.

Corresponding author

Correspondence to R. B. Liu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3434 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhao, N., Hu, JL., Ho, SW. et al. Atomic-scale magnetometry of distant nuclear spin clusters via nitrogen-vacancy spin in diamond. Nature Nanotech 6, 242–246 (2011). https://doi.org/10.1038/nnano.2011.22

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.22

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research