Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

High-dynamic-range magnetometry with a single electronic spin in diamond

This article has been updated

Abstract

Magnetic sensors capable of detecting nanoscale volumes of spins allow for non-invasive, element-specific probing1,2,3. The error in such measurements is usually reduced by increasing the measurement time, and noise averaging the signal4,5. However, achieving the best precision requires restricting the maximum possible field strength to much less than the spectral linewidth of the sensor. Quantum entanglement and squeezing can then be used to improve precision (although they are difficult to implement in solid-state environments). When the field strength is comparable to or greater than the spectral linewidth, an undesirable trade-off between field strength and signal precision occurs1. Here, we implement novel phase estimation algorithms6,7,8 on a single electronic spin associated with the nitrogen-vacancy defect centre in diamond to achieve an 8.5-fold improvement in the ratio of the maximum field strength to precision, for field magnitudes that are large (0.3 mT) compared to the spectral linewidth of the sensor (4.5 µT). The field uncertainty in our approach scales as 1/T0.88, compared to 1/T0.5 in the standard measurement approach, where T is the measurement time. Quantum phase estimation algorithms have also recently been implemented using a single nuclear spin in a nitrogen-vacancy centre9. Besides their direct impact on applications in magnetic sensing and imaging at the nanoscale, these results may prove useful in improving a variety of high-precision spectroscopy techniques.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental scheme.
Figure 2: Magnetic sensing with Ramsey fringes.
Figure 3: Non-adaptive phase estimation algorithms results.
Figure 4: Comparison of sensitivity scaling with resources.

Similar content being viewed by others

Change history

  • 13 January 2012

    In the version of this Letter originally published online, in the first paragraph of the Methods section, the definition of um was incorrect. This error has been corrected in all versions of the Letter.

References

  1. Budker, D. & Romalis, M. Optical magnetometry. Nature Phys. 3, 227–234 (2007).

    Article  CAS  Google Scholar 

  2. Kleiner, R., Koelle, D., Ludwig, F. & Clarke, J. Superconducting quantum interference devices: state of the art and applications. Proc. IEEE 92, 1534–1548 (2004).

    Article  CAS  Google Scholar 

  3. Poggio, M. & Degen, C. L. Force-detected nuclear magnetic resonance: recent advances and future challenges. Nanotechnology 21, 342001 (2010).

    Article  CAS  Google Scholar 

  4. Giovannetti, V., Lloyd, S. & Maccone, L. Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004).

    Article  CAS  Google Scholar 

  5. Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. Nature Photon. 5, 222–229 (2011).

    Article  CAS  Google Scholar 

  6. Higgins, B. L., Berry, D. W., Bartlett, S. D., Wiseman, H. M. & Pryde, G. J. Entanglement-free Heisenberg-limited phase estimation. Nature 450, 393–397 (2007).

    Article  CAS  Google Scholar 

  7. Higgins, B. L. et al. Demonstrating Heisenberg-limited unambiguous phase estimation without adaptive measurements. New J. Phys. 11, 073023 (2009).

    Article  Google Scholar 

  8. Said, R. S., Berry, D. W. & Twamley, J. Nanoscale magnetometry using a single-spin system in diamond. Phys. Rev. B 83, 125410 (2011).

    Article  Google Scholar 

  9. Waldherr, G. et al. High dynamic range magnetometry with a single nuclear spin in diamond. Nature Nanotech. http://dx.doi.org/10.1038/nnano.2011.224 (2011).

  10. Taylor, J. M. et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nature Phys. 4, 810–816 (2008).

    Article  CAS  Google Scholar 

  11. Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008).

    Article  CAS  Google Scholar 

  12. Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008).

    Article  CAS  Google Scholar 

  13. Bradac, C. et al. Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds. Nature Nanotech. 5, 345–349 (2010).

    Article  CAS  Google Scholar 

  14. Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nature Mater. 8, 383–387 (2009).

    Article  CAS  Google Scholar 

  15. Fu, C-C. et al. Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc. Natl Acad. Sci. USA 104, 727–732 (2007).

    Article  CAS  Google Scholar 

  16. McGuinness, L. P. et al. Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nature Nanotech. 6, 358–363 (2011).

    Article  CAS  Google Scholar 

  17. Jelezko, F. et al. Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Phys. Rev. Lett. 93, 130501 (2004).

    Article  CAS  Google Scholar 

  18. Dutt, M. V. G. et al. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316, 1312–1316 (2007).

    Article  Google Scholar 

  19. Itano, W. M. et al. Quantum projection noise: population fluctuations in two-level systems. Phys. Rev. A 47, 3554–3570 (1993).

    Article  CAS  Google Scholar 

  20. Wineland, D. J., Bollinger, J. J., Itano, W. M., Moore, F. L. & Heinzen, D. J. Spin squeezing and reduced quantum noise in spectroscopy. Phys. Rev. A 46, R6797–R6800 (1992).

    Article  CAS  Google Scholar 

  21. Nagata, T., Okamoto, R., O'Brien, J. L., Sasaki, K. & Takeuchi, S. Beating the standard quantum limit with four-entangled photons. Science 316, 726–729 (2007).

    Article  CAS  Google Scholar 

  22. Leibfried, D. et al. Toward Heisenberg-limited spectroscopy with multiparticle entangled states. Science 304, 1476–1478 (2004).

    Article  CAS  Google Scholar 

  23. Jones, J. A. et al. Magnetic field sensing beyond the standard quantum limit using 10-spin NOON states. Science 324, 1166–1168 (2009).

    Article  CAS  Google Scholar 

  24. Childress, L. et al. Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 314, 281–285 (2006).

    Article  CAS  Google Scholar 

  25. Berry, D. W. et al. How to perform the most accurate possible phase measurements. Phys. Rev. A 80, 052114 (2009).

    Article  Google Scholar 

  26. Giedke, G, Taylor, J. M., D'Alessandro, D., Lukin, M. D. & Imamoglu, A. Quantum measurement of a mesoscopic spin ensemble. Phys. Rev. A 74, 032316 (2006).

    Article  Google Scholar 

  27. Babinec, T. et al. A diamond nanowire single-photon source. Nature Nanotech. 5, 195–199 (2010).

    Article  CAS  Google Scholar 

  28. Grinolds, M. S. et al. Quantum control of proximal spins using nanoscale magnetic resonance imaging. Nature Phys. 7, 687–692 (2011).

    Article  CAS  Google Scholar 

  29. Jiang, L. et al. Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae. Science 326, 267–272 (2009).

    Article  CAS  Google Scholar 

  30. De Lange, G., Wang, Z. H., Ristè, D., Dobrovitski, V. V. & Hanson, R. Universal dynamical decoupling of a single solid-state spin from a spin bath. Science 330, 60–63 (2010).

    Article  CAS  Google Scholar 

  31. Ryan, C. A., Hodges, J. S. & Cory, D. G. Robust decoupling techniques to extend quantum coherence in diamond. Phys. Rev. Lett. 105, 200402 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would especially like to thank L. Childress for her helpful comments regarding the manuscript. The authors also acknowledge J. Taylor, C. Ryan, J. S. Hodges, G. Waldherr, F. Jelezko and M. D. Lukin for stimulating discussions. This work was supported by an NSF CAREER award (DMR-0847195), NSF PHY-100534, DOE Early Career (DE-SC 0006638) and the Alfred P. Sloan Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

N.M. and G.D. conceived and designed the experiments, and built the experimental set-up. N.M. and U.M. carried out the measurements. All authors contributed to analysis of the data, discussed the results and commented on the manuscript. G.D. wrote the paper with contributions from all authors.

Corresponding author

Correspondence to M. V. Gurudev Dutt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1366 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nusran, N., Momeen, M. & Dutt, M. High-dynamic-range magnetometry with a single electronic spin in diamond. Nature Nanotech 7, 109–113 (2012). https://doi.org/10.1038/nnano.2011.225

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.225

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing