Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Synthetically programmable nanoparticle superlattices using a hollow three-dimensional spacer approach

Abstract

Crystalline nanoparticle arrays and superlattices with well-defined geometries can be synthesized by using appropriate electrostatic1,2,3, hydrogen-bonding4,5 or biological recognition interactions6,7,8,9,10,11. Although superlattices with many distinct geometries can be produced using these approaches, the library of achievable lattices could be increased by developing a strategy that allows some of the nanoparticles within a binary lattice to be replaced with ‘spacer’ entities that are constructed to mimic the behaviour of the nanoparticles they replace, even though they do not contain an inorganic core. The inclusion of these spacer entities within a known binary superlattice would effectively delete one set of nanoparticles without affecting the positions of the other set. Here, we show how hollow DNA nanostructures can be used as ‘three-dimensional spacers’ within nanoparticle superlattices assembled through programmable DNA interactions7,11,12,13,14,15,16. We show that this strategy can be used to form superlattices with five distinct symmetries, including one that has never before been observed in any crystalline material.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Use of a three-dimensional spacer in DNA-programmable crystallization of gold nanoparticles.
Figure 2: SAXS data for seven distinct gold nanoparticle superlattices and ‘lattice X’.
Figure 3: SAXS data for cubic lattices made from nanoparticles of different sizes.
Figure 4: TEM images of the AB6-type lattices.

References

  1. Kalsin, A. M. et al. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science 312, 420–424 (2006).

    CAS  Article  Google Scholar 

  2. Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O'Brien, S. & Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 439, 55–59 (2006).

    CAS  Article  Google Scholar 

  3. Herlihy, K. P., Nunes, J. & DeSimone, J. M. Electrically driven alignment and crystallization of unique anisotropic polymer particles. Langmuir 24, 8421–8426 (2008).

    CAS  Article  Google Scholar 

  4. Han, L. et al. Novel interparticle spatial properties of hydrogen-bonding mediated nanoparticle assembly. Chem. Mater. 15, 29–37 (2003).

    CAS  Article  Google Scholar 

  5. Ni, W., Mosquera, R. A., Perez-Juste, J. & Liz-Marzan, L. M. Evidence for hydrogen-bonding-directed assembly of gold nanorods in aqueous solution. J. Phys. Chem. Lett. 1, 1181–1185 (2010).

    CAS  Article  Google Scholar 

  6. Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    CAS  Article  Google Scholar 

  7. Park, S. Y. et al. DNA-programmable nanoparticle crystallization. Nature 451, 553–556 (2008).

    CAS  Article  Google Scholar 

  8. Caswell, K. K., Wilson, J. N., Bunz, U. H. F. & Murphy, C. J. Preferential end-to-end assembly of gold nanorods by biotin–streptavidin connectors. J. Am. Chem. Soc. 125, 13914–13915 (2003).

    CAS  Article  Google Scholar 

  9. Salem, A. K., Chen, M., Hayden, J., Leong, K. W. & Searson, P. C. Directed assembly of multisegment Au/Pt/Au nanowires. Nano Lett. 4, 1163–1165 (2004).

    CAS  Article  Google Scholar 

  10. Alivisatos, A. P. et al. Organization of ‘nanocrystal molecules’ using DNA. Nature 382, 609–611 (1996).

    CAS  Article  Google Scholar 

  11. Nykypanchuk, D., Maye, M. M., van der Lelie, D. & Gang, O. DNA-guided crystallization of colloidal nanoparticles. Nature 451, 549–552 (2008).

    CAS  Article  Google Scholar 

  12. Chen, C-L., Zhang, P. & Rosi, N. L. A new peptide-based method for the design and synthesis of nanoparticle superstructures: construction of highly ordered gold nanoparticle double helices. J. Am. Chem. Soc. 130, 13555–13557 (2008).

    CAS  Article  Google Scholar 

  13. Jones, M. R. et al. DNA–nanoparticle superlattices formed from anisotropic building blocks. Nature Mater. 9, 913–917 (2010).

    CAS  Article  Google Scholar 

  14. Macfarlane, R. J. et al. Assembly and organization processes in DNA-directed colloidal crystallization. Proc. Natl Acad. Sci. USA 106, 10493–10498 (2009).

    CAS  Article  Google Scholar 

  15. Macfarlane, R. J. et al. Establishing the design rules for DNA-mediated programmable colloidal crystallization. Angew. Chem. Int. Ed. 49, 4589–4592 (2010).

    CAS  Article  Google Scholar 

  16. Macfarlane, R. J. et al. Nanoparticle superlattice engineering with DNA. Science 334, 204–208 (2011).

    CAS  Article  Google Scholar 

  17. Tan, S. J., Campolongo, M. J., Luo, D. & Cheng, W. L. Building plasmonic nanostructures with DNA. Nature Nanotech. 6, 268–276 (2011).

    CAS  Article  Google Scholar 

  18. Cutler, J. I. et al. Polyvalent nucleic acid nanostructures. J. Am. Chem. Soc. 133, 9254–9257 (2011).

    CAS  Article  Google Scholar 

  19. Hill, H. D. et al. Controlling the lattice parameters of gold nanoparticle FCC crystals with duplex DNA linkers. Nano Lett. 8, 2341–2344 (2008).

    CAS  Article  Google Scholar 

  20. Rupich, S. M., Shevchenko, E. V., Bodnarchuk, M. I., Lee, B. & Talapin, D. V. Size-dependent multiple twinning in nanocrystal superlattices. J. Am. Chem. Soc. 132, 289–296 (2010).

    CAS  Article  Google Scholar 

  21. Ye, X., Chen, J. & Murray, C. B. Polymorphism in self-assembled AB6 binary nanocrystal superlattices. J. Am. Chem. Soc. 133, 2613–2620 (2011).

    CAS  Article  Google Scholar 

  22. Bodnarchuk, M. I., Kovalenko, M. V., Heiss, W. & Talapin, D. V. Energetic and entropic contributions to self-assembly of binary nanocrystal superlattices: temperature as the structure-directing factor. J. Am. Chem. Soc. 132, 11967–11977 (2010).

    CAS  Article  Google Scholar 

  23. Redl, F. X., Cho, K-S., Murray, C. B. & O'Brien, S. Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots. Nature 423, 968–971 (2003).

    CAS  Article  Google Scholar 

  24. Zhuang, J. et al. Cylindrical superparticles from semiconductor nanorods. J. Am. Chem. Soc. 131, 6084–6085 (2009).

    CAS  Article  Google Scholar 

  25. Hu, Y., Uzun, O., Dubois, C. & Stellacci, F. Effect of ligand shell structure on the interaction between monolayer-protected gold nanoparticles. J. Phys. Chem. C 112, 6279–6284 (2008).

    CAS  Article  Google Scholar 

  26. Xiong, H., Lelie, D.v.d. & Gang, O. Phase behavior of nanoparticles assembled by DNA linkers. Phys. Rev. Lett. 102, 015504 (2009).

    Article  Google Scholar 

  27. Talapin, D. V., Shevchenko, E. V., Murray, C. B., Titov, A. V. & Kral, P. Dipole–dipole interactions in nanoparticle superlattices. Nano Lett. 7, 1213–1219 (2007).

    CAS  Article  Google Scholar 

  28. Sun, D. & Gang, O. Binary heterogeneous superlattices assembles from quantum dots and gold nanoparticles with DNA. J. Am. Chem. Soc. 133, 5252–5254 (2011).

    CAS  Article  Google Scholar 

  29. Zhang, K. et al. Nanopod formation through gold nanoparticle templated and catalyzed cross-linking of polymers bearing pendant propargyl ethers. J. Am. Chem. Soc. 132, 15151–15153 (2010).

    CAS  Article  Google Scholar 

  30. Jin, R., Wu, G., Li, Z., Mirkin, C. A. & Schatz, G. C. What controls the melting properties of DNA-linked gold nanoparticle assemblies? J. Am. Chem. Soc. 125, 1643–1654 (2003).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

C.A.M. acknowledges support for the Northwestern Nonequilibrium Energy Research Center from the DOE (DE-SC0000989) as well as support from the AFOSR and the DoD (for an NSSEF Fellowship). E.A. acknowledges a Graduate Research Fellowship from the NDSEG. E.A., R.J.M., M.R.J. and K.D.O. acknowledge Ryan Fellowships from Northwestern University. M.R.J. and K.D.O. acknowledge Graduate Research Fellowships from the NSF. SAXS experiments were carried out at the Dupont–Northwestern–Dow Collaborative Access Team beam line at the Advanced Photon Source (APS), Argonne National Laboratory, and use of the APS was supported by the DOE (DE-AC02-06CH11357). The TEM work was performed in the EPIC facility of the NUANCE Center at Northwestern University.

Author information

Authors and Affiliations

Authors

Contributions

E.A. and J.I.C. designed the experiments, prepared the materials, collected and analysed the data, and wrote the manuscript. R.J.M. designed the experiments and collected and analysed the data. M.R.J. collected and analysed the data. J.W. and G.L. analysed data for the tomography experiments. K.Z. and K.D.O. designed the experiments. C.A.M. designed the experiments and wrote the manuscript.

Corresponding author

Correspondence to Chad A. Mirkin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3503 kb)

Supplementary information

Supplementary movie 1 (AVI 2398 kb)

Supplementary information

Supplementary movie 2 (AVI 2307 kb)

Supplementary information

Supplementary movie 3 (AVI 3188 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Auyeung, E., Cutler, J., Macfarlane, R. et al. Synthetically programmable nanoparticle superlattices using a hollow three-dimensional spacer approach. Nature Nanotech 7, 24–28 (2012). https://doi.org/10.1038/nnano.2011.222

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.222

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research