Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Solid-state memories based on ferroelectric tunnel junctions

Abstract

Ferroic-order parameters1 are useful as state variables in non-volatile information storage media because they show a hysteretic dependence on their electric or magnetic field. Coupling ferroics with quantum-mechanical tunnelling allows a simple and fast readout of the stored information through the influence of ferroic orders on the tunnel current. For example, data in magnetic random-access memories2 are stored in the relative alignment of two ferromagnetic electrodes separated by a non-magnetic tunnel barrier, and data readout is accomplished by a tunnel current measurement. However, such devices based on tunnel magnetoresistance3 typically exhibit OFF/ON ratios of less than 4, and require high powers for write operations (>1 × 106 A cm−2). Here, we report non-volatile memories with OFF/ON ratios as high as 100 and write powers as low as 1 × 104 A cm−2 at room temperature by storing data in the electric polarization direction of a ferroelectric tunnel barrier. The junctions show large, stable, reproducible and reliable tunnel electroresistance, with resistance switching occurring at the coercive voltage of ferroelectric switching. These ferroelectric devices emerge as an alternative to other resistive memories4, and have the advantage of not being based on voltage-induced migration of matter at the nanoscale5,6, but on a purely electronic mechanism7.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sketch of the devices.
Figure 2: Ferroelectric switching versus resistive switching.
Figure 3: Direct tunnelling with large OFF/ON ratio.
Figure 4: Reproducible, fast and reversible switching.

Similar content being viewed by others

References

  1. Schmid, H. Some symmetry aspects of ferroics and single phase multiferroics. J. Phys. Condens. Matter 20, 434201 (2008).

    Article  Google Scholar 

  2. Ikeda, S. et al. Magnetic tunnel junctions for spintronic memories and beyond. IEEE Trans. Electron. Dev. 54, 991–1002 (2007).

    Article  CAS  Google Scholar 

  3. Moodera, J. S., Kinder, L. R., Wong, T. M. & Meservey, R. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74, 3273–3276 (1995).

    Article  CAS  Google Scholar 

  4. Waser, R. & Aono, M. Nanoionics-based resistive switching memories. Nature Mater. 6, 833–840 (2007).

    Article  CAS  Google Scholar 

  5. Yang, J. J. et al. Memristive switching mechanisms for metal/oxide/metal nanodevices. Nature Nanotech. 3, 429–433 (2008).

    Article  CAS  Google Scholar 

  6. Jo, S. H., Kim, K-H. & Lu, W. High-density crossbar arrays based on a Si memristive system. Nano Lett. 9, 870–874 (2009).

    Article  CAS  Google Scholar 

  7. Dawber, M., Rabe, K. M. & Scott, J. F. Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77, 1083–1130 (2005).

    Article  CAS  Google Scholar 

  8. Velev, J. P. et al. Magnetic tunnel junctions with ferroelectric barriers: predictions of four resistance states from first principles. Nano Lett. 9, 427–432 (2009).

    Article  CAS  Google Scholar 

  9. Tsymbal, E. Y. & Kohlstedt, H. Tunneling across a ferroelectric. Science 313, 181–183 (2006).

    Article  CAS  Google Scholar 

  10. Zhuravlev, M. Y., Sabirianov, R. F., Jaswal, S. S. & Tsymbal, E. Y. Giant electroresistance in ferroelectric tunnel junctions. Phys. Rev. Lett. 94, 246802 (2005).

    Article  Google Scholar 

  11. Kohlstedt, H., Pertsev, N. A., Rodriguez Contreras, J. & Waser, R. Theoretical current–voltage characteristics of ferroelectric tunnel junctions. Phys. Rev. B 72, 125341 (2005).

    Article  Google Scholar 

  12. Esaki, L., Laibowitz, R. B. & Stiles, P. J. Polar switch. IBM Tech. Discl. Bull. 13, 2161 (1971).

    Google Scholar 

  13. Tybell, T., Ahn, C. H. & Triscone, J-M. Ferroelectricity in thin perovskite films. Appl. Phys. Lett. 75, 856–858 (1999).

    Article  CAS  Google Scholar 

  14. Junquera, J. & Ghosez, P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506–509 (2003).

    Article  CAS  Google Scholar 

  15. Fong, D. D. et al. Ferroelectricity in ultrathin perovskite films. Science 304, 1650–1653 (2004).

    Article  CAS  Google Scholar 

  16. Kim, Y. S. et al. Critical thickness of ultrathin ferroelectric BaTiO3 films. Appl. Phys. Lett. 86, 102907 (2005).

    Article  Google Scholar 

  17. Rodriguez-Contreras, J. et al. Resistive switching in metal–ferroelectric–metal junctions. Appl. Phys. Lett. 83, 4595–4597 (2003).

    Article  CAS  Google Scholar 

  18. Kohlstedt, H. et al. Method to distinguish ferroelectric from nonferroelectric origin in case of resistive switching in ferroelectric capacitors. Appl. Phys. Lett. 92, 062907 (2008).

    Article  Google Scholar 

  19. Garcia, V. et al. Giant tunnel electroresistance for non-destructive readout of ferroelectric states. Nature 460, 81–84 (2009).

    Article  CAS  Google Scholar 

  20. Maksymovych, P. et al. Polarisation control of electron tunneling into ferroelectric surfaces. Science 324, 1421–1425 (2009).

    Article  CAS  Google Scholar 

  21. Gruverman, A. et al. Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale. Nano Lett. 9, 3539–3543 (2009).

    Article  CAS  Google Scholar 

  22. Choi, K. J. et al. Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306, 1005–1009 (2004).

    Article  CAS  Google Scholar 

  23. Kalinin, S. V. et al. The role of electrochemical phenomena in scanning probe microscopy of ferroelectric thin films. ACS Nano 26, 5683–5691 (2001).

    Google Scholar 

  24. Wang, R. V. et al. Reversible chemical switching of a ferroelectric film. Phys. Rev. Lett. 102, 047601 (2009).

    Article  CAS  Google Scholar 

  25. Bristowe, N. C. et al. Electrochemical ferroelectric switching. Preprint at http://arXiv.org/1108.2208 (2011).

  26. Garcia, V. et al. Ferroelectric control of spin polarisation. Science 327, 1106–1110 (2010).

    Article  CAS  Google Scholar 

  27. Brinkman, W. F., Dynes, R. C. & Rowell, J. M. Tunneling conductance of asymmetrical barriers. J. Appl. Phys. 41, 1915–1921 (1970).

    Article  CAS  Google Scholar 

  28. International Technology Roadmap for Semiconductors, 2009; available at http://www.itrs.net/links/2009itrs/home2009.htm.

  29. Stengel, M., Vanderbilt, D. & Spaldin, N. A. Enhancement of ferroelectricity at metal–oxide interfaces. Nature Mater. 8, 392–397 (2009).

    Article  CAS  Google Scholar 

  30. Highland, M. J. et al. Polarisation switching without domain formation at the intrinsic coercive field in ultrathin ferroelectric PbTiO3 . Phys. Rev. Lett. 105, 167601 (2010).

    Article  Google Scholar 

  31. Rodriguez, B. J., Callahan, C., Kalinin, S. V. & Proksch, R. Dual-frequency resonance-tracking atomic force microscopy. Nanotechnology 18, 475504 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank H. Jaffrès, P. Seneor and P. Metaxas for fruitful discussions as well as S. Vinzelberg, R. Goschke and B. Holmes at Atomic Force for technical assistance with the PFM measurements. Financial support from the European Research Council (ERC advanced grant no. 267579), French C-Nano Île de France and the French Réseau Thématique de Recherche Avancée Triangle de la Physique is acknowledged. X.M. acknowledges support from the Herchel Smith Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

V.G., K.B., M.B. and A.B. conceived and designed the experiments. X.M., N.D.M., A.Cr., J.A., S.X., B.D. and C.D. were responsible for the preparation and nanofabrication of the samples. A.Ch., V.G., K.B., S.F., A.M. and R.P. performed the PFM measurements. A.Ch., A.Cr., V.G., J.G., K.B. and S.F. performed the electrical measurements. A.Ch., A.Cr., V.G., S.F., K.B., M.B. and A.B. analyzed the data. V.G. and M.B. co-wrote the paper. All authors contributed to the manuscript and the interpretation of the data.

Corresponding author

Correspondence to Vincent Garcia.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 565 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chanthbouala, A., Crassous, A., Garcia, V. et al. Solid-state memories based on ferroelectric tunnel junctions. Nature Nanotech 7, 101–104 (2012). https://doi.org/10.1038/nnano.2011.213

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.213

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing