Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamic internal gradients control and direct electric currents within nanostructured materials

Abstract

Switchable nanomaterials—materials that can change their properties and/or function in response to external stimuli—have potential applications in electronics, sensing and catalysis. Previous efforts to develop such materials have predominately used molecular switches that can modulate their properties by means of conformational changes. Here, we show that electrical conductance through films of gold nanoparticles coated with a monolayer of charged ligands can be controlled by dynamic, long-range gradients of both mobile counterions surrounding the nanoparticles and conduction electrons on the nanoparticle cores. The internal gradients and the electric fields they create are easily reconfigurable, and can be set up in such a way that electric currents through the nanoparticles can be modulated, blocked or even deflected so that they only pass through select regions of the material. The nanoion/counterion hybrids combine the properties of electronic conductors with those of ionic gels/polymers, are easy to process by solution-casting and, by controlling the internal gradients, can be reconfigured into different electronic elements (current rectifiers, switches and diodes).

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental arrangement.
Figure 2: Polarization and current rectification in nanoionic nanoparticle films.
Figure 3: Current ‘steering’.
Figure 4: Modelling coupled ion and electron transport.
Figure 5: Origin of current steering.
Figure 6: All-nanoparticle diode.

Similar content being viewed by others

References

  1. Browne, W. R. & Feringa, B. L. Making molecular machines work. Nature Nanotech. 1, 25–35 (2006).

    Article  CAS  Google Scholar 

  2. Fialkowski, M. et al. Principles and implementations of dissipative (dynamic) self-assembly. J. Phys. Chem. B 110, 2482–2496 (2006).

    Article  CAS  Google Scholar 

  3. Klajn, R., Stoddart, J. F. & Grzybowski, B. A. Nanoparticles functionalised with reversible molecular and supramolecular switches. Chem. Soc. Rev. 39, 2203–2237 (2010).

    Article  CAS  Google Scholar 

  4. Liu, Y. et al. Linear artificial molecular muscles. J. Am. Chem. Soc. 127, 9745–9759 (2005).

    Article  CAS  Google Scholar 

  5. Halder, G. J., Kepert, C. J., Moubaraki, B., Murray, K. S. & Cashion, J. D. Guest-dependent spin crossover in a nanoporous molecular framework material. Science 298, 1762–1765 (2002).

    Article  CAS  Google Scholar 

  6. Robertson, J. High dielectric constant oxides. Eur. Phys. J. 28, 265–291 (2004).

    CAS  Google Scholar 

  7. Kowalczyk, B., Walker, D. A., Soh, S. & Grzybowski, B. A. Nanoparticle supracrystals and sayered supracrystals as chemical amplifiers. Angew. Chem. Int. Ed. 49, 5737–5741 (2010).

    Article  CAS  Google Scholar 

  8. Liu, J. & Lu, Y. Stimuli-responsive disassembly of nanoparticle aggregates for light-up colorimetric sensing. J. Am. Chem. Soc. 127, 12677–12683 (2005).

    Article  CAS  Google Scholar 

  9. Coutinho, C. A. & Gupta, V. K. Formation and properties of composites based on microgels of a responsive polymer and TiO2 nanoparticles. J. Colloid Interface Sci. 315, 116–122 (2007).

    Article  CAS  Google Scholar 

  10. Wei, Y. H., Han, S. B., Kim, J., Soh, S. L. & Grzybowski, B. A. Photoswitchable catalysis mediated by dynamic aggregation of nanoparticles. J. Am. Chem. Soc. 132, 11018–11020 (2010).

    Article  CAS  Google Scholar 

  11. Klajn, R., Wesson, P. J., Bishop, K. J. M. & Grzybowski, B. A. Writing self-erasing images using metastable nanoparticle ‘inks’. Angew. Chem. Int. Ed. 48, 7035–7039 (2009).

    Article  CAS  Google Scholar 

  12. Walker, D. A. & Gupta, V. K. Reversible end-to-end assembly of gold nanorods using a disulfide-modified polypeptide. Nanotechnology 19, 435603 (2008).

    Article  Google Scholar 

  13. Coskun, A. et al. Molecular-mechanical switching at the nanoparticle–solvent interface: practice and theory. J. Am. Chem. Soc. 132, 4310–4320 (2010).

    Article  CAS  Google Scholar 

  14. Klajn, R. et al. Metal nanoparticles functionalized with molecular and supramolecular switches. J. Am. Chem. Soc. 131, 4233–4235 (2009).

    Article  CAS  Google Scholar 

  15. Pascher, T., Chesick, J. P., Winkler, J. R. & Gray, H. B. Protein folding triggered by electron transfer. Science 271, 1558–1560 (1996).

    Article  CAS  Google Scholar 

  16. Mikami, R. et al. Reversible photo-switching of the magnetization of iron oxide nanoparticles at room temperature. Angew. Chem. Int. Ed. 43, 6135–6139 (2004).

    Article  CAS  Google Scholar 

  17. Suda, M., Nakagawa, M., Iyoda, T. & Einaga, Y. Reversible photoswitching of ferromagnetic FePt nanoparticles at room temperature. J. Am. Chem. Soc. 129, 5538–5543 (2007).

    Article  CAS  Google Scholar 

  18. Hasobe, T. et al. Photovoltaic cells using composite nanoclusters of porphyrins and fullerenes with gold nanoparticles. J. Am. Chem. Soc. 127, 1216–1228 (2005).

    Article  CAS  Google Scholar 

  19. Nakanishi, H. et al. Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles. Nature 460, 371–375 (2009).

    Article  CAS  Google Scholar 

  20. van der Molen, S. J. et al. Light-controlled conductance switching of ordered metal–molecule–metal devices. Nano Lett. 9, 76–80 (2009).

    Article  CAS  Google Scholar 

  21. Ikeda, M., Tanifuji, N., Yamaguchi, H., Irie, M. & Matsuda, K. Photoswitching of conductance of diarylethene–Au nanoparticle network. Chem. Commun. 1355–1357 (2007).

  22. Matsuda, K. et al. Conductance photoswitching of diarylethene–gold nanoparticle network induced by photochromic reaction. J. Phys. Chem. C 112, 17005–17010 (2008).

    Article  CAS  Google Scholar 

  23. Sakano, T., Yamaguchi, H., Tanifuji, N., Irie, M. & Matsuda, K. Percolation-type photoswitching behavior in conductance of diarylethene–silver nanoparticle networks. Chem. Lett. 37, 634–635 (2008).

    Article  CAS  Google Scholar 

  24. Kalsin, A. M. et al. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science 312, 420–424 (2006).

    Article  CAS  Google Scholar 

  25. Kalsin, A. M., Kowalczyk, B., Smoukov, S. K., Klajn, R. & Grzybowski, B. A. Ionic-like behavior of oppositely charged nanoparticles. J. Am. Chem. Soc. 128, 15046–15047 (2006).

    Article  CAS  Google Scholar 

  26. Kalsin, A. M., Kowalczyk, B., Wesson, P., Paszewski, M. & Grzybowski, B. A. Studying the thermodynamics of surface reactions on nanoparticles by electrostatic titrations. J. Am. Chem. Soc. 129, 6664–6665 (2007).

    Article  CAS  Google Scholar 

  27. Chen, P. Y. & Meyer, T. J. Medium effects on charge transfer in metal complexes. Chem. Rev. 98, 1439–1477 (1998).

    Article  CAS  Google Scholar 

  28. Lee, D., Harper, A. S., DeSimone, J. M. & Murray, R. W. Ion atmosphere relaxation control of electron transfer dynamics in a plasticized carbon dioxide redox polyether melt. J. Am. Chem. Soc. 125, 1096–1103 (2003).

    Article  CAS  Google Scholar 

  29. Wang, W., Lee, D. & Murray, R. W. Electron transport dynamics in a room-temperature Au nanoparticle molten salt. J. Phys. Chem. B 110, 10258–10265 (2006).

    Article  CAS  Google Scholar 

  30. Weingartner, H. et al. The dielectric response of room-temperature ionic liquids: effect of cation variation. J. Phys. Chem. B 111, 4775–4780 (2007).

    Article  Google Scholar 

  31. Terrill, R. H. et al. Monolayers in three dimensions: NMR, SAXS, thermal, and electron hopping studies of alkanethiol stabilized gold clusters. J. Am. Chem. Soc. 117, 12537–12548 (1995).

    Article  CAS  Google Scholar 

  32. Zabet-Khosousi, A. & Dhirani, A. A. Charge transport in nanoparticle assemblies. Chem. Rev. 108, 4072–4124 (2008).

    Article  CAS  Google Scholar 

  33. Abeles, B., Sheng, P., Coutts, M. D. & Arie, Y. Structural and electrical properties of granular metal-films. Adv. Phys. 24, 407–461 (1975).

    Article  CAS  Google Scholar 

  34. Mistry, K. et al. in 2007 IEEE International Electron Devices Meeting Vols 1,2, 247–250 (IEEE, 2007).

  35. Ling, Q. D. et al. A dynamic random access memory based on a conjugated copolymer containing electron-donor and -acceptor moieties. Angew. Chem. Int. Ed. 45, 2947–2951 (2006).

    Article  CAS  Google Scholar 

  36. Salivahanan, S. Electronic Devices and Circuits 2nd edn (Tata McGraw-Hill, 2008).

  37. Williams, T. The Circuit Designer's Companion 2nd edn (Elsevier, 2005).

  38. Han, J. H., Kim, K. B., Kim, H. C. & Chung, T. D. Ionic circuits based on polyelectrolyte diodes on a microchip. Angew. Chem. Int. Ed. 48, 3830–3833 (2009).

    Article  CAS  Google Scholar 

  39. Cayre, O. J., Chang, S. T. & Velev, O. D. Polyelectrolyte diode: nonlinear current response of a junction between aqueous ionic gels. J. Am. Chem. Soc. 129, 10801–10806 (2007).

    Article  CAS  Google Scholar 

  40. Wuelfing, W. P., Green, S. J., Pietron, J. J., Cliffel, D. E. & Murray, R. W. Electronic conductivity of solid-state, mixed-valent, monolayer-protected Au clusters. J. Am. Chem. Soc. 122, 11465–11472 (2000).

    Article  CAS  Google Scholar 

  41. Leger, J. M., Rodovsky, D. B. & Bartholomew, G. P. Self-assembled, chemically fixed homojunctions in semiconducting polymers. Adv. Mater. 18, 3130–3134 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Non-equilibrium Energy Research Center, which is an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (award no. DE-SC0000989).

Author information

Authors and Affiliations

Authors

Contributions

H.N. carried out the experiments and data analysis pertaining to TMA nanoparticle films. D.A.W. performed KFM scans, created the figures, edited the text and, with Y.Y., carried out the nanoparticle diode experiments. K.J.M.B. improved upon the preliminary theoretical models by P.J.W., S-L.S. and S.S. by coupling ion and electron migration. B.A.G. conceived the experiments and wrote the paper.

Corresponding author

Correspondence to Bartosz A. Grzybowski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2642 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakanishi, H., Walker, D., Bishop, K. et al. Dynamic internal gradients control and direct electric currents within nanostructured materials. Nature Nanotech 6, 740–746 (2011). https://doi.org/10.1038/nnano.2011.165

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.165

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing