Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Electron microscopy of specimens in liquid

Abstract

Imaging samples in liquids with electron microscopy can provide unique insights into biological systems, such as cells containing labelled proteins, and into processes of importance in materials science, such as nanoparticle synthesis and electrochemical deposition. Here we review recent progress in the use of electron microscopy in liquids and its applications. We examine the experimental challenges involved and the resolution that can be achieved with different forms of the technique. We conclude by assessing the potential role that electron microscopy of liquid samples can play in areas such as energy storage and bioimaging.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Configurations for electron microscopy in liquid.
Figure 2: Examples of electron microscopy systems for liquids.
Figure 3: Electron microscopy of biological samples.
Figure 4: Liquid cell electron microscopy in materials science.
Figure 5: Resolution of different forms of electron microscopy in liquid.

References

  1. Ruska, E. Beitrag zur uebermikroskopischen Abbildungen bei hoeheren Drucken. Kolloid Z. 100, 212–219 (1942). This paper describes the first in situ TEM — its principle of operation is still the basis of most modern in situ TEM systems.

    CAS  Article  Google Scholar 

  2. Thiberge, S. et al. Scanning electron microscopy of cells and tissues under fully hydrated conditions. Proc. Natl Acad. Sci. USA 101, 3346–3351 (2004). This paper made it clear that cells and tissue fully embedded in liquid can be imaged with a SEM with a resolution of several tens of nanometres.

    CAS  Article  Google Scholar 

  3. Williamson, M. J., Tromp, R. M., Vereecken, P. M., Hull, R. & Ross, F. M. Dynamic microscopy of nanoscale cluster growth at the solid–liquid interface. Nature Mater. 2, 532–536 (2003). This paper describes the first use of a silicon nitride liquid cell for measuring a growth process in the TEM, and the first combination of electrical biasing with liquid cell microscopy to control and quantify a growth process.

    CAS  Article  Google Scholar 

  4. de Jonge, N., Peckys, D. B., Kremers, G. J. & Piston, D. W. Electron microscopy of whole cells in liquid with nanometer resolution. Proc. Natl Acad. Sci. USA 106, 2159–2164 (2009). This paper is the first demonstration of the imaging of labelled proteins in whole eukaryotic cells in liquid with a resolution of several nanometres, using STEM.

    CAS  Article  Google Scholar 

  5. Huang, J. Y. et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 1515–1520 (2010).

    CAS  Article  Google Scholar 

  6. Zheng, H. et al. Observation of single colloidal platinum nanocrystal growth trajectories. Science 324, 1309–1312 (2009). This paper is the first demonstration of the study of nanoparticle growth in liquid with nanometre resolution in TEM.

    CAS  Article  Google Scholar 

  7. Ruska, E. The development of the electron microscope and of electron microscopy. Nobel Lectures, Physics 1981–1990 (1986).

    Google Scholar 

  8. Reimer, L. & Kohl, H. Transmission Electron Microscopy: Physics of Image Formation (Springer, 2008).

    Google Scholar 

  9. Bozzola, J. J. & Russell, L. D. Electron Microscopy (Jones and Bartlett, 1992).

    Google Scholar 

  10. von Ardenne, M. Ueber eun 200 kV-Universal-Elektronenmikroskop mit Objektabschattungsvorrichtung. Z. Phys. 117, 657–688 (1941).

    Article  Google Scholar 

  11. Donnelly, S. E. et al. Ordering in a fluid inert gas confined by flat surfaces. Science 296, 507–510 (2002).

    CAS  Article  Google Scholar 

  12. Parsons, D. F., Matricardi, V. R., Moretz, R. C. & Turner, J. N. Electron microscopy and diffraction of wet unstained and unfixed biological objects. Adv. Biol. Med. Phys. 15, 161–270 (1974).

    CAS  Article  Google Scholar 

  13. Helveg, S. et al. Atomic-scale imaging of carbon nanofibre growth. Nature 427, 426–429 (2004).

    CAS  Article  Google Scholar 

  14. Dai, L. L., Sharma, R. & Wu, C. Y. Self-assembled structure of nanoparticles at a liquid–liquid interface. Langmuir 21, 2641–2643 (2005).

    CAS  Article  Google Scholar 

  15. Danilatos, G. D. & Robinson, V. N. E. Principles of scanning electron microscopy at high specimen pressures. Scanning 18, 75–78 (1979).

    Google Scholar 

  16. Stokes, D. J. Recent advances in electron imaging, image interpretation and applications: environmental scanning electron microscopy. Phil. Trans. R. Soc. Lond. A 361, 2771–2787 (2003).

    CAS  Article  Google Scholar 

  17. Stokes, D. L. Principles and Practice of Variable Pressure/Environmental Scanning Electron Microscopy (VP-SEM) (Wiley, 2008).

    Book  Google Scholar 

  18. Abrams, I. M. & McBain, J. W. A closed cell for electron microscopy. J Appl. Phys. 15, 607–609 (1944).

    CAS  Article  Google Scholar 

  19. Daulton, T. L., Little, B. J., Lowe, K. & Jones-Meehan, J. In situ environmental cell–transmission electron microscopy study of microbial reduction of chromium(VI) using electron energy loss spectroscopy. Microsc. Microanal. 7, 470–485 (2001).

    CAS  Google Scholar 

  20. Nishijima, K., Yamasaki, J., Orihara, H. & Tanaka, N. Development of microcapsules for electron microscopy and their application to dynamical observation of liquid crystals in transmission electron microscopy. Nanotechnology 15, S329–S332 (2004).

    CAS  Article  Google Scholar 

  21. Mohanty, N., Fahrenholtz, M., Nagaraja, A., Boyle, D. & Berry, V. Impermeable graphenic encasement of bacteria. Nano Lett. 11, 1270–1275 (2011).

    CAS  Article  Google Scholar 

  22. Grogan, J. M. & Bau, H. H. The nanoaquarium: a platform for in situ transmission electron microscopy in liquid media. J. Microelectromech. Syst. 19, 885–894 (2010).

    CAS  Article  Google Scholar 

  23. Franks, R. et al. A study of nanomaterial dispersion in solution by wet-cell transmission electron microscopy. J. Nanosci. Nanotechnol. 8, 4404–4407 (2008).

    CAS  Article  Google Scholar 

  24. Liu, K. L. et al. Novel microchip for in situ TEM imaging of living organisms and bio-reactions in aqueous conditions. Lab Chip 8, 1915–1921 (2008).

    CAS  Article  Google Scholar 

  25. Ring, E. A. & de Jonge, N. Microfluidic system for transmission electron microscopy. Microsc. Microanal. 16, 622–629 (2010).

    CAS  Article  Google Scholar 

  26. de Jonge, N., Poirier-Demers, N., Demers, H., Peckys, D. B. & Drouin, D. Nanometer-resolution electron microscopy through micrometers-thick water layers. Ultramicroscopy 110, 1114–1119 (2010).

    CAS  Article  Google Scholar 

  27. Peckys, D. B., Veith, G. M., Joy, D. C. & de Jonge, N. Nanoscale imaging of whole cells using a liquid enclosure and a scanning transmission electron microscope. PLoS One 4, e8214 (2009).

    Article  CAS  Google Scholar 

  28. Creemer, J. F. et al. Atomic-scale electron microscopy at ambient pressure. Ultramicroscopy 108, 993–998 (2008). This paper describes advances in high-pressure cells for the TEM that combine enhanced functionality with the ability to image at atomic resolution.

    CAS  Article  Google Scholar 

  29. Creemer, J. F. et al. A MEMS reactor for atomic-scale microscopy of nanomaterials under industrially relevant conditions. J. Microelectromech. Syst. 19, 254–264 (2010).

    CAS  Article  Google Scholar 

  30. Kawasaki, T., Ueda, K., Ichihashi, M. & Tanji, T. Improvement of windowed type environmental-cell transmission electron microscope for in situ observation of gas-solid interactions. Rev. Sci. Instr. 80, 113701–113705 (2009).

    Article  CAS  Google Scholar 

  31. Klein, K. L., Anderson, I. M. & de Jonge, N. Transmission electron microscopy with a liquid flow cell. J. Microsc. 242, 117–123 (2011).

    CAS  Article  Google Scholar 

  32. Zheng, H., Claridge, S. A., Minor, A. M., Alivisatos, A. P. & Dahmen, U. Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. Nano Lett. 9, 2460–2465 (2009).

    CAS  Article  Google Scholar 

  33. Nishiyama, H. et al. Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film. J. Struct. Biol. 169, 438–449 (2010).

    CAS  Article  Google Scholar 

  34. Inami, W., Nakajima, K., Miyakawa, A. & Kawata, Y. Electron beam excitation assisted optical microscope with ultra-high resolution. Opt. Express 18, 12897–12902 (2010).

    CAS  Article  Google Scholar 

  35. Evans, J. E., Jungjohann, K. L., Browning, N. D. & Arslan, I. Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett. 11, 2809–2813 (2011).

    CAS  Article  Google Scholar 

  36. Sali, A., Glaeser, R., Earnest, T. & Baumeister, W. From words to literature in structural proteomics. Nature 422, 216–225 (2003).

    CAS  Article  Google Scholar 

  37. Stahlberg, H. & Walz, T. Molecular electron microscopy: state of the art and current challenges. ACS Chem. Biol. 3, 268–281 (2008).

    CAS  Article  Google Scholar 

  38. Pierson, J., Sani, M., Tomova, C., Godsave, S. & Peters, P. J. Toward visualization of nanomachines in their native cellular environment. Histochem. Cell. Biol. 132, 253–262 (2009).

    CAS  Article  Google Scholar 

  39. Kirk, S. E., Skepper, J. N. & Donald, A. M. Application of environmental scanning electron microscopy to determine biological surface structure. J. Microsc. 233, 205–224 (2009).

    CAS  Article  Google Scholar 

  40. Collins, S. P. et al. Advantages of environmental scanning electron microscopy in studies of microorganisms. Microsc. Res. Techniq. 25, 398–405 (1993).

    CAS  Article  Google Scholar 

  41. Bogner, A., Thollet, G., Basset, D., Jouneau, P. H. & Gauthier, C. Wet STEM: A new development in environmental SEM for imaging nano-objects included in a liquid phase. Ultramicroscopy 104, 290–301 (2005).

    CAS  Article  Google Scholar 

  42. Xiao, Y., Patolsky, F., Katz, E., Hainfeld, J. F. & Willner, I. 'Plugging into enzymes': nanowiring of redox enzymes by a gold nanoparticle. Science 299, 1877–1881 (2003).

    CAS  Article  Google Scholar 

  43. Barshack, I. et al. A novel method for 'wet' SEM. Ultrastruct. Pathol. 28, 29–31 (2004).

    Article  Google Scholar 

  44. Melo, R. C., Sabban, A. & Weller, P. F. Leukocyte lipid bodies: inflammation-related organelles are rapidly detected by wet scanning electron microscopy. J. Lipid. Res. 47, 2589–2594 (2006).

    CAS  Article  Google Scholar 

  45. Sugi, H. et al. Dynamic electron microscopy of ATP-induced myosin head movement in living muscle filaments. Proc. Natl Acad. Sci. USA 94, 4378–4392 (1997).

    CAS  Article  Google Scholar 

  46. Matricardi, V. R., Moretz, R. C. & Parsons, D. F. Electron diffraction of wet proteins: catalase. Science 177, 268–270 (1972).

    CAS  Article  Google Scholar 

  47. Lippincott-Schwartz, J. & Manley, S. Putting super-resolution fluorescence microscopy to work. Nature Methods 6, 21–23 (2009).

    CAS  Article  Google Scholar 

  48. Peckys, D. B. & de Jonge, N. Visualization of gold nanoparticle uptake in living cells with liquid scanning transmission electron microscopy. Nano Lett. 11, 1733–1738 (2011).

    CAS  Article  Google Scholar 

  49. Peckys, D. B., Mazur, P., Gould, K. L. & de Jonge, N. Fully hydrated yeast cells imaged with electron microscopy. Biophys. J. 100, 2522–2529 (2011).

    CAS  Article  Google Scholar 

  50. Murai, T. et al. Low cholesterol triggers membrane microdomain-dependent CD44 shedding and suppresses tumor cell migration. J. Biol. Chem. 286, 1999–2007 (2011).

    CAS  Article  Google Scholar 

  51. Dukes, M. J., Peckys, D. B. & de Jonge, N. Correlative fluorescence microscopy and scanning transmission electron microscopy of quantum-dot-labeled proteins in whole cells in liquid. ACS Nano 4, 4110–4116 (2010).

    CAS  Article  Google Scholar 

  52. Radisic, A., Vereecken, P. M., Hannon, J. B., Searson, P. C. & Ross, F. M. Quantifying electrochemical nucleation and growth of nanoscale clusters using real-time kinetic data. Nano Lett. 6, 238–242 (2006).

    CAS  Article  Google Scholar 

  53. Scharifker, B. R. & Hills, G. J. Theoretical and experimental studies of multiple nucleation. Electrochim. Acta 28, 879–889 (1983).

    CAS  Article  Google Scholar 

  54. Radisic, A., Ross, F. M. & Searson, P. C. In situ study of the growth kinetics of individual island electrodeposition of copper. J. Phys. Chem. B 110, 7862–7868 (2006).

    CAS  Article  Google Scholar 

  55. Radisic, A., Vereecken, P. M., Searson, P. C. & Ross, F. M. The morphology and nucleation kinetics of copper islands during electrodeposition. Surf. Sci. 600, 1817–1826 (2006).

    CAS  Article  Google Scholar 

  56. Wise, M. E., Biskos, G., Martin, S. T., Russell, L. M. & Buseck, P. R. Phase transitions of single salt particles studied using a transmission electron microscope with an environmental cell. Aerosol. Sci. Tech. 39, 849–856 (2005).

    CAS  Article  Google Scholar 

  57. Gai, P. L. Development of wet environmental TEM (wet-ETEM) for in situ studies of liquid-catalyst reactions on the nanoscale. Microsc. Microanal. 8, 21–28 (2002). The first observation by TEM of an industrially important liquid-phase catalytic reaction.

    CAS  Article  Google Scholar 

  58. Gai, P. L. & Harmer, M. A. Surface atomic defect structures and growth of Au nanorods. Nano Lett. 2, 771–774 (2002).

    CAS  Article  Google Scholar 

  59. Gabrisch, H., Kjeldgaard, L., Johnson, E. & Dahmen, U. Equilibrium shape and interface roughening of small liquid Pb inclusions in solid Al. Acta Mater. 49, 4259–4269 (2001).

    CAS  Article  Google Scholar 

  60. Ross, F. M., Tersoff, J. & Reuter, M. C. Sawtooth faceting in silicon nanowires. Phys. Rev. Lett. 95, 146104 (2005).

    CAS  Article  Google Scholar 

  61. Eswaramoorthy, S. K., Howe, J. M. & Muralidharan, G. In situ determination of the nanoscale chemistry and behavior of solid-liquid systems. Science 318, 1437–1440 (2007).

    CAS  Article  Google Scholar 

  62. Lee, J. G. & Mori, H. In situ observation of alloy phase formation in nanometre-sized particles in the Sn–Bi system. Philos. Mag. 84, 2675–2686 (2004).

    CAS  Article  Google Scholar 

  63. Howe, J. M. & Saka, H. In situ transmission electron microscopy studies of the solid–liquid interface. MRS Bull. 29, 951–957 (2004).

    CAS  Article  Google Scholar 

  64. Kuwabata, S., Kongkanand, A., Oyamatsu, D. & Torimoto, T. Observation of ionic liquid by scanning electron microscope. Chem. Lett. 35, 600–601 (2006).

    CAS  Article  Google Scholar 

  65. Roy, P., Lynch, R. & Schmuki, P. Electron beam induced in vacuo Ag deposition on TiO2 from ionic liquids. Electrochem. Comm. 11, 1567–1570 (2009).

    CAS  Article  Google Scholar 

  66. Joy, D. C. & Joy, C. S. Scanning electron microscope imaging in liquids — some data on electron interactions in water. J. Microsc. 221, 84–99 (2005).

    Article  Google Scholar 

  67. Hyun, J. K., Ercius, P. & Muller, D. A. Beam spreading and spatial resolution in thick organic specimens. Ultramicroscopy 109, 1–7 (2008).

    CAS  Article  Google Scholar 

  68. Loos, J. et al. Electron tomography on micrometer-thick specimens with nanometer resolution. Nano Lett. 9, 1704–1708 (2009).

    CAS  Article  Google Scholar 

  69. Demers, H., Poirier-Demers, N., Drouin, D. & de Jonge, N. Simulating STEM imaging of nanoparticles in micrometers-thick substrates. Microsc. Microanal. 16, 795–804 (2010).

    CAS  Article  Google Scholar 

  70. Sousa, A. A., Hohmann-Marriott, M. F., Zhang, G. & Leapman, R. D. Monte Carlo electron-trajectory simulations in bright-field and dark-field STEM: implications for tomography of thick biological sections. Ultramicroscopy 109, 213–221 (2009).

    CAS  Article  Google Scholar 

  71. Spence, J. C. H. High-Resolution Electron Microscopy (Oxford Univ. Press, 2003).

    Google Scholar 

  72. Hohmann-Marriott, M. F. et al. Nanoscale 3D cellular imaging by axial scanning transmission electron tomography. Nature Methods 6, 729–731 (2009).

    CAS  Article  Google Scholar 

  73. Aoyama, K., Takagi, T., Hirase, A. & Miyazawa, A. STEM tomography for thick biological specimens. Ultramicroscopy 109, 70–80 (2008).

    CAS  Article  Google Scholar 

  74. Crewe, A. V., Wall, J. & Langmore, J. Visibility of single atoms. Science 168, 1338–1340 (1970).

    CAS  Article  Google Scholar 

  75. Krivanek, O. L. et al. Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464, 571–574 (2010).

    CAS  Article  Google Scholar 

  76. Goldstein, J. I. in Introduction to Analytical Electron Microscopy (eds Hren, J. J., Goldstein, J. I. & Joy, D. C.) 83–120 (Plenum Press, 1979).

    Book  Google Scholar 

  77. Thiberge, S., Zik, O. & Moses, E. An apparatus for imaging liquids, cells, and other wet samples in the scanning electron microscopy. Rev. Sci. Instrum. 75, 2280–2289 (2004).

    CAS  Article  Google Scholar 

  78. Fenter, P., Lee, S. S., Zhang, Z. & Sturchio, N. C. In situ imaging of orthoclase-aqueous solution interfaces with X-ray reflection interface microscopy. J. Appl. Phys. (in the press).

  79. Garrett, B. C. et al. Role of water in electron-initiated processes and radical chemistry: issues and scientific advances. Chem. Rev. 105, 355–390 (2005).

    CAS  Article  Google Scholar 

  80. Donev, E. U., Schardein, G., Wright, J. C. & Hastings, J. T. Substrate effects on the electron-beam-induced deposition of platinum from a liquid precursor. Nanoscale 3, 2709–2717 (2011).

    CAS  Article  Google Scholar 

  81. Hui, S. W. & Parsons, D. F. Electron diffraction of wet biological membranes. Science 184, 77–78 (1974).

    CAS  Article  Google Scholar 

  82. Kenworthy, A. K. et al. Dynamics of putative raft-associated proteins at the cell surface. J. Cell Biol. 165, 735–746 (2004).

    CAS  Article  Google Scholar 

  83. Holmqvist, P., Dhont, J. K. G. & Lang, P. R. Anisotropy of Brownian motion caused only by hydrodynamic interaction with a wall. Phys. Rev. E 74, 021402 (2006).

    Article  CAS  Google Scholar 

  84. Pawley, J. B. Handbook of Biological Confocal Microscopy (Springer, 1995).

    Book  Google Scholar 

  85. Hell, S. W. Far-field optical nanoscopy. Science 316, 1153–1158 (2007). This paper reviews several light microscopy approaches to break the diffraction barrier.

    CAS  Article  Google Scholar 

  86. Betzig, E., Trautman, J. K., Harris, T. D., Weiner, J. S. & Kostelak, R. L. Breaking the diffraction barrier: optical microscopy on a nanometric scale. Science 251, 1468–1470 (1991).

    CAS  Article  Google Scholar 

  87. Chao, W., Harteneck, B. D., Liddle, J. A., Anderson, E. H. & Attwood, D. T. Soft X-ray microscopy at a spatial resolution better than 15 nm. Nature 435, 1210–1213 (2005).

    CAS  Article  Google Scholar 

  88. Larabell, C. A. & Nugent, K. A. Imaging cellular architecture with X-rays. Curr. Opin. Struct. Biol. 20, 623–631 (2010).

    CAS  Article  Google Scholar 

  89. Muller, D. J., Helenius, J., Alsteens, D. & Dufrene, Y. F. Force probing surfaces of living cells to molecular resolution. Nature Chem. Biol. 5, 383–390 (2009).

    Article  CAS  Google Scholar 

  90. Allison, D. P., Mortensen, N. P., Sullivan, C. J. & Doktycz, M. J. Atomic force microscopy of biological samples. Nanomed. Nanobiotechnol. 2, 618–634 (2010).

    Article  Google Scholar 

  91. Fleming, A. J., Kenton, B. J. & Leang, K. K. Bridging the gap between conventional and video-speed scanning probe microscopes. Ultramicroscopy 110, 1205–1214 (2010).

    CAS  Article  Google Scholar 

  92. Sulchek, T. et al. High-speed atomic force microscopy in liquid. Rev. Sci. Instrum. 71, 2097–2099 (2000).

    CAS  Article  Google Scholar 

  93. Langmore, J. P. & Smith, M. F. Quantitative energy-filtered electron microscopy of biological molecules in ice. Ultramicroscopy 46, 349–373 (1992).

    CAS  Article  Google Scholar 

  94. Haider, M., Hartel, P., Muller, H., Uhlemann, S. & Zach, J. Current and future aberration correctors for the improvement of resolution in electron microscopy. Phil. Trans. R. Soc. A 367, 3665–3682 (2009).

    CAS  Article  Google Scholar 

  95. Flannigan, D. J., Barwick, B. & Zewail, A. H. Biological imaging with 4D ultrafast electron microscopy. Proc. Natl Acad. Sci. USA 107, 9933–9937 (2010).

    CAS  Article  Google Scholar 

  96. Campbell, G. H., LaGrange, T., Kim, J. S., Reed, B. W. & Browning, N. D. Quantifying transient states in materials with the dynamic transmission electron microscope. J. Electron Microsc. 59 (suppl. 1), S67–S74 (2010).

    CAS  Article  Google Scholar 

  97. Kruit, P. & Jansen, G. H. in Handbook of Charged Particle Optics (ed. Orloff, J.) 275–318 (CRC Press, 1997).

    Google Scholar 

  98. Lippincott-Schwartz, J., Snapp, E. & Kenworthy, A. Studying protein dynamics in living cells. Nature Rev. Mol. Cell Biol. 2, 444–456 (2001).

    CAS  Article  Google Scholar 

  99. Agronskaia, A. V. et al. Integrated fluorescence and transmission electron microscopy. J. Struct. Biol. 164, 183–189 (2008).

    CAS  Article  Google Scholar 

  100. Shu, X. et al. A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PLoS Biol. 9, e1001041 (2011).

    CAS  Article  Google Scholar 

  101. Chou, L. Y., Ming, K. & Chan, W. C. Strategies for the intracellular delivery of nanoparticles. Chem. Soc. Rev. 40, 233–245 (2011).

    CAS  Article  Google Scholar 

  102. Tkachenko, A. G. et al. Cellular trajectories of peptide-modified gold particle complexes: comparison of nuclear localization signals and peptide transduction domains. Bioconjugate Chem. 15, 482–490 (2004).

    CAS  Article  Google Scholar 

  103. Tantra, R. & Knight, A. Cellular uptake and intracellular fate of engineered nanoparticles: A review on the application of imaging techniques. Nanotoxicology 5, 381–392 (2010).

    Article  CAS  Google Scholar 

  104. Ross, F. M. Electrochemical nucleation, growth and dendrite formation in liquid cell TEM. Microsc. Microanal. 16, S326–S327 (2010).

    Article  CAS  Google Scholar 

  105. Wang, C. M. et al. In situ transmission electron microscopy and spectroscopy studies of interfaces in Li-ion batteries: challenges and opportunities. J. Mater. Res. 25, 1541–1547 (2010).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Vanderbilt University School of Medicine and by IBM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Niels de Jonge or Frances M. Ross.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

de Jonge, N., Ross, F. Electron microscopy of specimens in liquid. Nature Nanotech 6, 695–704 (2011). https://doi.org/10.1038/nnano.2011.161

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.161

This article is cited by

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research