Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Experimental demonstration of a single-molecule electric motor

Abstract

For molecules to be used as components in molecular machines, methods that couple individual molecules to external energy sources and that selectively excite motion in a given direction are required1,2,3,4,5,6. Significant progress has been made in the construction of molecular motors powered by light1,2,7 and by chemical reactions3,4,5,8, but electrically driven motors have not yet been built, despite several theoretical proposals for such motors9,10,11,12,13. Here we report that a butyl methyl sulphide molecule adsorbed on a copper surface can be operated as a single-molecule electric motor. Electrons from a scanning tunnelling microscope are used to drive the directional motion of the molecule in a two-terminal setup. Moreover, the temperature and electron flux can be adjusted to allow each rotational event to be monitored at the molecular scale in real time. The direction and rate of the rotation are related to the chiralities of both the molecule and the tip of the microscope (which serves as the electrode), illustrating the importance of the symmetry of the metal contacts in atomic-scale electrical devices14.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Single-molecule rotors.
Figure 2: Exciting and measuring molecular rotation.
Figure 3: Mechanism of directional rotation.

Similar content being viewed by others

References

  1. Koumura, N., Zijlstra, R. W. J., van Delden, R. A., Harada, N. & Feringa, B. L. Light-driven monodirectional molecular rotor. Nature 401, 152–155 (1999).

    Article  CAS  Google Scholar 

  2. van Delden, R. A. et al. Unidirectional molecular motor on a gold surface. Nature 437, 1337–1340 (2005).

    Article  CAS  Google Scholar 

  3. Kelly, T. R., Silva, R. A., De Silva, H., Jasmin, S. & Zhao, Y. J. A rationally designed prototype of a molecular motor. J. Am. Chem. Soc. 122, 6935–6949 (2000).

    Article  CAS  Google Scholar 

  4. Leigh, D. A., Wong, J. K. Y., Dehez, F. & Zerbetto, F. Unidirectional rotation in a mechanically interlocked molecular rotor. Nature 424, 174–179 (2003).

    Article  CAS  Google Scholar 

  5. Hernandez, J. V., Kay, E. R. & Leigh, D. A. A reversible synthetic rotary molecular motor. Science 306, 1532–1537 (2004).

    Article  CAS  Google Scholar 

  6. Shirai, Y., Osgood, A. J., Zhao, Y., Kelly, K. F. & Tour, J. M. Directional control in thermally driven single-molecule nanocars. Nano Lett. 5, 2330–2334 (2005).

    Article  CAS  Google Scholar 

  7. Balzani, V. et al. Autonomous artificial nanomotor powered by sunlight. Proc. Natl Acad. Sci. USA 103, 1178–1183 (2006).

    Article  CAS  Google Scholar 

  8. Juluri, B. K. et al. A Mechanical actuator driven electrochemically by artificial molecular muscles. ACS Nano 3, 291–300 (2009).

    Article  CAS  Google Scholar 

  9. Horinek, D. & Michl, J. Surface-mounted altitudinal molecular rotors in alternating electric field: single-molecule parametric oscillator molecular dynamics. Proc. Natl Acad. Sci. USA 102, 14175–14180 (2005).

    Article  CAS  Google Scholar 

  10. Astumian, R. D. Chemical peristalsis. Proc. Natl Acad. Sci. USA 102, 1843–1847 (2005).

    Article  CAS  Google Scholar 

  11. Seldenthuis, J. S., Prins, F., Thijssen, J. M. & van der Zant, H. S. J. An all-electric single-molecule motor. ACS Nano 4, 6681–6686 (2010).

    Article  CAS  Google Scholar 

  12. Král, P. & Seideman, T. Current-induced rotation of helical molecular wires. J. Chem. Phys. 123, 1847021–1847025 (2005).

    Article  Google Scholar 

  13. Dundas, D., McEniry, E. J. & Todorov, T. N. Current-driven atomic waterwheels. Nature Nanotech. 4, 99–102 (2009).

    Article  CAS  Google Scholar 

  14. Schull, G., Frederiksen, T., Arnau, A., Sánchez-Portal, D. & Berndt, R. Atomic-scale engineering of electrodes for single-molecule contacts. Nature Nanotech. 6, 23–27 (2011).

    Article  CAS  Google Scholar 

  15. Wang, W. et al. Electron stimulation of internal torsion of a surface-mounted molecular rotor. ACS Nano 4, 4929–4935 (2010).

    Article  CAS  Google Scholar 

  16. Hawthorne, M. F. et al. Electrical or photocontrol of the rotary motion of a metallacarborane. Science 303, 1849–1851 (2004).

    Article  CAS  Google Scholar 

  17. Stipe, B. C., Rezaei, M. A. & Ho, W. Inducing and viewing the rotational motion of a single molecule. Science 279, 1907–1909 (1998).

    Article  CAS  Google Scholar 

  18. Tierney, H. L. et al. Mode-selective electrical excitation of a molecular rotor. Chem. Eur. J. 15, 9678–9680 (2009).

    Article  CAS  Google Scholar 

  19. Manzano, C. et al. Step-by-step rotation of a molecule-gear mounted on an atomic-scale axis. Nature Mater. 8, 576–579 (2009).

    Article  CAS  Google Scholar 

  20. Wintjes, N. et al. A supramolecular multiposition rotary device. Angew. Chem. Int. Ed. 46, 4089–4092 (2007).

    Article  CAS  Google Scholar 

  21. Baber, A. E., Tierney, H. L. & Sykes, C. H. A quantitative single-molecule study of thioether molecular rotors. ACS Nano 2, 2385–2391 (2008).

    Article  CAS  Google Scholar 

  22. Jewell, A. D. et al. Time-resolved studies of individual molecular rotors. J. Phys. Condens. Matter 22, 264006–264016 (2010).

    Article  Google Scholar 

  23. Tierney, H. L. et al. Chirality and rotation of asymmetric surface-bound thioethers. J. Phys. Chem. C 115, 897–901 (2011).

    Article  CAS  Google Scholar 

  24. Zhong, D. Y. et al. Surface-mounted molecular rotors with variable functional groups and rotation radii. Nano Lett. 9, 4387–4391 (2009).

    Article  CAS  Google Scholar 

  25. Pawin, G. et al. Surface diffusive motion in a periodic and asymmetric potential. J. Am. Chem. Soc. 130, 15244–15245 (2008).

    Article  CAS  Google Scholar 

  26. Astumian, R. D. Thermodynamics and kinetics of a Brownian motor. Science 276, 917–922 (1997).

    Article  CAS  Google Scholar 

  27. Reimann, P. & Hänggi, P. Introduction to the physics of Brownian motors. Appl. Phys. A 75, 169–178 (2002).

    Article  CAS  Google Scholar 

  28. Stipe, B. C., Rezaei, M. A. & Ho, W. Coupling of vibrational excitation to the rotational motion of a single adsorbed molecule. Phys. Rev. Lett. 81, 1263–1266 (1998).

    Article  CAS  Google Scholar 

  29. Tierney, H. L., Murphy, C. J. & Sykes, E. C. H. Regular scanning microscope tips can be intrinsically chiral. Phys. Rev. Lett. 106, 010801 (2011).

    Article  Google Scholar 

  30. Tully, J. C. Chemical dynamics at metal surfaces. Annu. Rev. Phys. Chem. 51, 153–178 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Science Foundation, the Beckman Foundation and Research Corporation for support of this work. H.L.T. and E.V.I. acknowledge the Department of Education for GAANN fellowships.

Author information

Authors and Affiliations

Authors

Contributions

H.L.T., C.J.M., A.D.J., A.E.B. and E.V.I. performed the experiments. Data analysis was performed by H.L.T., C.J.M., H.Y.K., A.F.M., N.K. and E.C.H.S. The paper was written by H.L.T., C.J.M. and E.C.H.S.

Corresponding author

Correspondence to E. Charles H. Sykes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 761 kb)

Supplementary information

Supplementary movie (MOV 7176 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tierney, H., Murphy, C., Jewell, A. et al. Experimental demonstration of a single-molecule electric motor. Nature Nanotech 6, 625–629 (2011). https://doi.org/10.1038/nnano.2011.142

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.142

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing