Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Solution-processed core–shell nanowires for efficient photovoltaic cells

Abstract

Semiconductor nanowires are promising for photovoltaic applications1,2,3,4,5,6,7,8,9,10,11, but, so far, nanowire-based solar cells have had lower efficiencies than planar cells made from the same materials6,7,8,9,10,12,13, even allowing for the generally lower light absorption of nanowires. It is not clear, therefore, if the benefits of the nanowire structure, including better charge collection and transport14 and the possibility of enhanced absorption through light trapping4,15, can outweigh the reductions in performance caused by recombination at the surface of the nanowires and at p–n junctions. Here, we fabricate core–shell nanowire solar cells with open-circuit voltage and fill factor values superior to those reported for equivalent planar cells, and an energy conversion efficiency of 5.4%, which is comparable to that of equivalent planar cells despite low light absorption levels16. The device is made using a low-temperature solution-based cation exchange reaction17,18,19,20,21 that creates a heteroepitaxial junction between a single-crystalline CdS core and single-crystalline Cu2S shell. We integrate multiple cells on single nanowires in both series and parallel configurations for high output voltages and currents, respectively. The ability to produce efficient nanowire-based solar cells with a solution-based process and Earth-abundant elements22,23,24 could significantly reduce fabrication costs relative to existing high-temperature bulk material approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural characterization of CdS and CdS–Cu2S core–shell nanowires.
Figure 2: Fabrication and characterization of CdS–Cu2S core–shell nanowire PV devices.
Figure 3: SPCM of a core–shell nanowire.
Figure 4: Multiple PV units on a single nanowire, in series and in parallel.

Similar content being viewed by others

References

  1. Huynh, W. U., Dittmer, J. J. & Alivisatos, A. P. Hybrid nanorod–polymer solar cells. Science 295, 2425–2427 (2002).

    Article  CAS  Google Scholar 

  2. Gur, I., Fromer, N. A., Geier, M. L. & Alivisatos, A. P. Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 310, 462–465 (2005).

    Article  CAS  Google Scholar 

  3. Wu, Y. et al. Synthesis and photovoltaic application of copper(I) sulfide nanocrystals. Nano Lett. 8, 2551–2555 (2008).

    Article  CAS  Google Scholar 

  4. Garnett, E. & Yang, P. Light trapping in silicon nanowire solar cells. Nano Lett. 10, 1082–1087 (2010).

    Article  CAS  Google Scholar 

  5. Law, M. et al. Nanowire dye-sensitized solar cells. Nature Mater. 4, 455–459 (2005).

    Article  CAS  Google Scholar 

  6. Tian, B. et al. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, 885–889 (2007).

    Article  CAS  Google Scholar 

  7. Czaban, J. A., Thompson, D. A. & LaPierre, R. R. GaAs core–shell nanowires for photovoltaic applications. Nano Lett. 9, 148–154 (2008).

    Article  Google Scholar 

  8. Kelzenberg, M. D. et al. Photovoltaic measurements in single-nanowire silicon solar cells. Nano Lett. 8, 710–714 (2008).

    Article  CAS  Google Scholar 

  9. Kempa, T. J. et al. Single and tandem axial p-i-n nanowire photovoltaic devices. Nano Lett. 8, 3456–3460 (2008).

    Article  CAS  Google Scholar 

  10. Dong, Y., Tian, B., Kempa, T. J. & Lieber, C. M. Coaxial group III-nitride nanowire photovoltaics. Nano Lett. 9, 2183–2187 (2009).

    Article  CAS  Google Scholar 

  11. Fan, Z. et al. Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nature Mater. 8, 648–653 (2009).

    Article  CAS  Google Scholar 

  12. Goto, H. et al. Growth of core–shell InP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy. Appl. Phys. Express 2, 035004 (2009).

    Article  Google Scholar 

  13. Wei, W. et al. Direct heteroepitaxy of vertical InAs nanowires on Si substrates for broad band photovoltaics and photodetection. Nano Lett. 9, 2926–2934 (2009).

    Article  CAS  Google Scholar 

  14. Kayes, B. M., Atwater, H. A. & Lewis, N. S. Comparison of the device physics principles of planar and radial p–n junction nanorod solar cells. J. Appl. Phys. 97, 114302 (2005).

    Article  Google Scholar 

  15. Cao, L. et al. Resonant germanium nanoantenna photodetectors. Nano Lett. 10, 1229–1233 (2010).

    Article  CAS  Google Scholar 

  16. Martinuzzi, S. Trends and problems in cadmium sulfide (CdS)/copper sulfide (CuxS) thin film solar cells: a review. Sol. Cells 5, 243–268 (1982).

    Article  CAS  Google Scholar 

  17. Son, D. H., Hughes, S. M., Yin, Y. & Paul Alivisatos, A. Cation exchange reactions in ionic nanocrystals. Science 306, 1009–1012 (2004).

    Article  CAS  Google Scholar 

  18. Robinson, R. D. et al. Spontaneous superlattice formation in nanorods through partial cation exchange. Science 317, 355–358 (2007).

    Article  CAS  Google Scholar 

  19. Luther, J. M., Zheng, H., Sadtler, B. & Alivisatos, A. P. Synthesis of PbS nanorods and other ionic nanocrystals of complex morphology by sequential cation exchange reactions. J. Am. Chem. Soc. 131, 16851–16857 (2009).

    Article  CAS  Google Scholar 

  20. Sadtler, B. et al. Selective facet reactivity during cation exchange in cadmium sulfide nanorods. J. Am. Chem. Soc. 131, 5285–5293 (2009).

    Article  CAS  Google Scholar 

  21. Jain, P. K., Amirav, L., Aloni, S. & Alivisatos, A. P. Nanoheterostructure cation exchange: anionic framework conservation. J. Am. Chem. Soc. 132, 9997–9999 (2010).

    Article  CAS  Google Scholar 

  22. Trentler, T. J. et al. Solution–liquid–solid growth of crystalline IIIV semiconductors: an analogy to vapor–liquid–solid growth. Science 270, 1791–1794 (1995).

    Article  CAS  Google Scholar 

  23. Ouyang, L. et al. Catalyst-assisted solution–liquid–solid synthesis of CdS/CdSe nanorod heterostructures. J. Am. Chem. Soc. 129, 133–138 (2006).

    Article  Google Scholar 

  24. Dong, A., Wang, F., Daulton, T. L. & Buhro, W. E. Solution–liquid–solid (SLS) growth of ZnSe–ZnTe quantum wires having axial heterojunctions. Nano Lett. 7, 1308–1313 (2007).

    Article  CAS  Google Scholar 

  25. Lauhon, L. J., Gudiksen, M. S., Wang, D. & Lieber, C. M. Epitaxial core–shell and core–multishell nanowire heterostructures. Nature 420, 57–61 (2002).

    Article  CAS  Google Scholar 

  26. Duan, X. F. & Lieber, C. M. General synthesis of compound semiconductor nanowires. Adv. Mater. 12, 298–302 (2000).

    Article  CAS  Google Scholar 

  27. Li, Y. D. et al. Nonaqueous synthesis of CdS nanorod semiconductor. Chem. Mater. 10, 2301–2303 (1998).

    Article  CAS  Google Scholar 

  28. Bragagnolo, J. A. et al. The design and fabrication of thin-film cadmium sulfide/copper(I) sulfide cells of 9.15% conversion efficiency. IEEE Trans. Electron. Dev. ED-27, 645–651 (1980).

    Article  CAS  Google Scholar 

  29. Rothwarf, A. & Barnett, A. M. Design analysis of thin-film CdS–Cu2S solar-cell. IEEE Trans. Electron. Dev. 24, 381–387 (1977).

    Article  Google Scholar 

  30. Bryant, F. J. & Glew, R. W. Analysis of the current–voltage characteristics of cadmium sulphide solar cells under varying light intensities. Ener. Convers. 14, 129–133 (1975).

    Article  Google Scholar 

  31. MATLAB version R2008b (MathWorks Inc., 2008).

  32. Barrett, S. D. Image SXM http://www.ImageSXM.org.uk (2008).

Download references

Acknowledgements

This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy (contract no. DE-AC02-05CH11231). The work on devices integrated in parallel and in series was supported by the National Science Foundation (NSF, contract no. 0832819). The authors thank the National Center for Electron Microscopy for use of their facilities.

Author information

Authors and Affiliations

Authors

Contributions

J.T., Z.H. and P.Y. conceived and designed the experiments. J.T. fabricated the devices and performed the measurements. Z.H. collected and analysed the TEM images. S.B. was responsible for the scanning photocurrent mapping. H.G. provided the simulation results. J.T., Z.H. and P.Y. co-wrote the paper. All authors discussed the results and revised the manuscript.

Corresponding author

Correspondence to Peidong Yang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 644 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, J., Huo, Z., Brittman, S. et al. Solution-processed core–shell nanowires for efficient photovoltaic cells. Nature Nanotech 6, 568–572 (2011). https://doi.org/10.1038/nnano.2011.139

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.139

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing