Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Graphene nanoribbons with smooth edges behave as quantum wires

Abstract

Graphene nanoribbons with perfect edges are predicted to exhibit interesting electronic and spintronic properties1,2,3,4, notably quantum-confined bandgaps and magnetic edge states. However, so far, graphene nanoribbons produced by lithography have had rough edges, as well as low-temperature transport characteristics dominated by defects (mainly variable range hopping between localized states in a transport gap near the Dirac point5,6,7,8,9). Here, we report that one- and two-layer nanoribbon quantum dots made by unzipping carbon nanotubes10 exhibit well-defined quantum transport phenomena, including Coulomb blockade, the Kondo effect, clear excited states up to 20 meV, and inelastic co-tunnelling. Together with the signatures of intrinsic quantum-confined bandgaps and high conductivities, our data indicate that the nanoribbons behave as clean quantum wires at low temperatures, and are not dominated by defects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: High-quality unzipping-derived graphene nanoribbons.
Figure 2: Electron transport of GNR1 (L ≈ 86 nm).
Figure 3: Electron transport of a high-quality quantum dot in GNR2 (L ≈ 140 nm).
Figure 4: Electron transport of GNR3 (L ≈ 60 nm).

Similar content being viewed by others

References

  1. Nakada, K., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954–17961 (1996).

    Article  CAS  Google Scholar 

  2. Son, Y-W., Cohen, M. L. & Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006).

    Article  Google Scholar 

  3. Son, Y-W., Cohen, M. L. & Louie, S. G. Half-metallic graphene nanoribbons. Nature 444, 347–349 (2006).

    Article  CAS  Google Scholar 

  4. Trauzettel, B. et al. Spin qubits in graphene quantum dots. Nature Phys. 3, 192–196 (2007).

    Article  CAS  Google Scholar 

  5. Han, M. Y., Brant, J. C. & Kim, P. Electron transport in disordered graphene nanoribbons. Phys. Rev. Lett. 104, 056801 (2010).

    Article  Google Scholar 

  6. Todd, K., Chou, H-T., Amasha, S. & Goldhaber-Gordon, D. Quantum dot behavior in graphene nanostrictions. Nano Lett. 9, 416–421 (2009).

    Article  CAS  Google Scholar 

  7. Gallagher, P., Todd, K. & Goldhaber-Gordon, D. Disorder-induced gap behavior in graphene nanoribbons. Phys. Rev. B 81, 115409 (2010).

    Article  Google Scholar 

  8. Stampfer, C. et al. Energy gaps in etched graphene nanoribbons. Phys. Rev. Lett. 102, 056403 (2009).

    Article  CAS  Google Scholar 

  9. Molitor, F. et al. Transport gap in side-gated graphene constrictions. Phys. Rev. B 79, 075426 (2009).

    Article  Google Scholar 

  10. Jiao, L. et al. Facile synthesis of high-quality graphene nanoribbons. Nature Nanotech. 5, 321–325 (2010).

    Article  CAS  Google Scholar 

  11. Xie, L. et al. Graphene nanoribbons from unzipped carbon nanotubes: atomic structures, Raman spectroscopy and electrical properties. J. Am. Chem. Soc. 113, 10394–10397 (2011).

    Article  Google Scholar 

  12. Tao, C. et al. Spatially resolving spin-split edge states of chiral graphene nanoribbons. Preprint at http://arXiv.org/abs/1101.1141 (2011).

  13. Wang, X. et al. N-doping of graphene through electrothermal reactions with ammonia. Science 324, 768–771 (2009).

    Article  CAS  Google Scholar 

  14. Wang, X. et al. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 100, 206803 (2008).

    Article  Google Scholar 

  15. Li, X., Wang, X., Zhang, L., Lee, S. & Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semidonductors. Science 319, 1229–1232 (2008).

    Article  CAS  Google Scholar 

  16. Chen, Z., Lin, Y-M., Rooks, M. J. & Avouris, P. Graphene nano-ribbon electronics. Physica E 40, 228–232 (2007).

    Article  CAS  Google Scholar 

  17. Lin, Y-M. & Avouris, P. Strong suppression of electrical noise in bi-layer graphene nanodevices. Nano Lett. 8, 2119–2125 (2008).

    Article  CAS  Google Scholar 

  18. Wang, J. & Lundstrom, M. Ballistic transport in high electron mobility transistors. IEEE Trans. Electron. Dev. 50, 1604–1609 (2003).

    Article  CAS  Google Scholar 

  19. Liang, W. et al. Fabry–Perot interference in a nanotube electron waveguide. Nature 411, 665–669 (2001).

    Article  CAS  Google Scholar 

  20. Javey, A. et al. Ballistic carbon nanotube field-effect transistors. Nature 424, 654–657 (2004).

    Article  Google Scholar 

  21. Kouwenhoven, L. P. et al. in Mesoscopic Electron Transport NATO Advanced Study Institutes, Ser. E, Vol. 345 (eds Sohn, L. L. et al.) 105–214 (Kluwer, 1997).

    Book  Google Scholar 

  22. Jarillo-Herrero, P. et al. Electron–hole symmetry in a semiconducting carbon nanotube quantum dot. Nature 429, 389–392 (2004).

    Article  CAS  Google Scholar 

  23. Wehling, T. O., Katsnelson, M. I. & Lichtenstein, A. I. Impurities on graphene: midgap states and migration barriers. Phys. Rev. B 80, 085428 (2009).

    Article  Google Scholar 

  24. Kong, J. et al. Chemical profiling of single nanotubes: intramolecular p–n–p junctions and on-tube single-electron transistors. Appl. Phys. Lett. 80, 73–75 (2002).

    Article  CAS  Google Scholar 

  25. Kouwenhoven, L. P. et al. Excitation spectra of circular, few-electron quantum dots. Science 278, 1788–1792 (1997).

    Article  CAS  Google Scholar 

  26. De Franceschi, S. et al. Electron cotunneling in a semiconductor quantum dot. Phys. Rev. Lett. 86, 878–881 (2001).

    Article  CAS  Google Scholar 

  27. Bockrath, M. et al. Single-electron transport in ropes of carbon nanotubes. Science 275, 1922–1925 (1997).

    Article  CAS  Google Scholar 

  28. Goldhaber-Gordon, D. et al. Kondo effect in a single-electron transistor. Nature 391, 156–159 (1998).

    Article  CAS  Google Scholar 

  29. Biercuk, M. J. et al. Electrical transport in single-wall carbon nanotubes. Top. Appl. Phys. 111, 455–493 (2008).

    Article  CAS  Google Scholar 

  30. Wang, X. & Dai, H. Etching and narrowing graphene from the edges. Nature Chem. 2, 661–665 (2010).

    Article  CAS  Google Scholar 

  31. Shimizu, T. et al. Large intrinsic energy bandgaps in annealed nanotube derived graphene nanoribbons. Nature Nanotech. 6, 45–50 (2011).

    Article  CAS  Google Scholar 

  32. Tan, C. L. et al. Observations of two-fold shell filling and Kondo effect in a graphene nano-ribbon quantum dot device. Preprint at http://arXiv.org/abs/0910.5777 (2009).

  33. Liang, W., Bockrath, M. & Park, H. Shell filling and exchange coupling in metallic single-walled carbon nanotubes. Phys. Rev. Lett. 88, 126801 (2002).

    Article  Google Scholar 

  34. Nygard, J., Cobden, D. H. & Lindelof, P. E. Kondo physics in carbon nanotubes. Nature 408, 342–346 (2000).

    Article  CAS  Google Scholar 

  35. Buitelaar, M. R. et al. Multiwall carbon nanotube as quantum dots. Phys. Rev. Lett. 88, 156801 (2002).

    Article  CAS  Google Scholar 

  36. Chen, J-H. et al. Tunable Kondo effect in graphene with defects. Nature Phys. http://dx.doi.org/10.1038/nphys1962 (2011).

  37. Moriyama, S. et al. Four-electron shell structures and an interacting two-electron system in carbon-nanotube quantum dots. Phys. Rev. Lett. 94, 186806 (2005).

    Article  CAS  Google Scholar 

  38. Lin, Y-M., et al. Electrical observation of subband formation in graphene nanoribbons. Phys. Rev. B 78, 161409(R) (2008).

    Article  Google Scholar 

  39. Liang, X. et al. Formation of bandgap and subbands in graphene nanomeshes with sub-10 nm ribbon width fabricated via nanoimprint lithography. Nano Lett. 10, 2454–2460 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank D. Goldhaber-Gordon for helpful discussions. The work at Stanford was supported in part by the Office of Naval Research (ONR), the ONR Graphene MURI, MARCO MSD Focus Center and Intel. Aberration corrected transmission electron microscopy was performed at the NCEM at Lawrence Berkeley Lab, which was supported by the US Department of Energy (contract no. DE-AC02-05CH11231). The work at University of Florida was supported in part by the National Science Foundation (NSF) and the ONR.

Author information

Authors and Affiliations

Authors

Contributions

X.W. and H.D. conceived and designed the experiments. X.W. and J.W. fabricated the devices, performed the experiments and analysed the data. Y.O. and J.G. performed simulations. L.J. provided graphene nanoribbon samples. H.W. and L.X. performed TEM characterizations. X.W., Y.O., J.G. and H.D. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Hongjie Dai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1463 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Ouyang, Y., Jiao, L. et al. Graphene nanoribbons with smooth edges behave as quantum wires. Nature Nanotech 6, 563–567 (2011). https://doi.org/10.1038/nnano.2011.138

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.138

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing