Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nanopore sensors for nucleic acid analysis

Abstract

Nanopore analysis is an emerging technique that involves using a voltage to drive molecules through a nanoscale pore in a membrane between two electrolytes, and monitoring how the ionic current through the nanopore changes as single molecules pass through it. This approach allows charged polymers (including single-stranded DNA, double-stranded DNA and RNA) to be analysed with subnanometre resolution and without the need for labels or amplification. Recent advances suggest that nanopore-based sensors could be competitive with other third-generation DNA sequencing technologies, and may be able to rapidly and reliably sequence the human genome for under $1,000. In this article we review the use of nanopore technology in DNA sequencing, genetics and medical diagnostics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Trends in nanopore analysis of DNA.
Figure 2: Biological nanopores for DNA sequencing.
Figure 3: Solid-state nanopore architectures for DNA analysis.
Figure 4: Other applications of nanopores: miRNA detection and genomic profiling.
Figure 5: Hybrid biological–solid-state nanopores.
Figure 6: Possible novel nanopore architectures for sequencing.

Similar content being viewed by others

References

  1. Thomas, P. D. & Kejariwal, A. Coding single-nucleotide polymorphisms associated with complex vs. mendelian disease: Evolutionary evidence for differences in molecular effects. Proc. Natl Acad. Sci. USA 101, 15398–15403 (2004).

    CAS  Google Scholar 

  2. International HapMap Consortium. A haplotype map of the human genome. Nature 437, 1299–1320 (2005).

  3. Mardis, E. R. Next-generation DNA sequencing methods. Annu. Rev. Genom. Hum. Genet. 9, 387–402 (2008).

    CAS  Google Scholar 

  4. Metzker, M. L. Sequencing technologies — the next generation. Nature Rev. Genet. 11, 31–46 (2010).

    CAS  Google Scholar 

  5. http://www.genome.gov/12513210.

  6. Coulter, W. H. Means for counting particles suspended in a fluid. US patent 2,656,508 (1953).

  7. Church, G., Deamer, D. W., Branton, D., Baldarelli, R. & Kasianowicz, J. Characterization of individual polymer molecules based on monomer-interface interactions. US patent 5,795,782 (1995).

  8. Deamer, D. W. & Branton, D. Characterization of nucleic acids by nanopore analysis. Acc. Chem. Res. 35, 817–825 (2002).

    CAS  Google Scholar 

  9. Rhee, M. & Burns, M. A. Nanopore sequencing technology: research trends and applications. Trends Biotechnol. 24, 580–586 (2006).

    CAS  Google Scholar 

  10. Dekker, C. Solid-state nanopores. Nature Nanotech. 2, 209–215 (2007).

    CAS  Google Scholar 

  11. Healy, K. Nanopore-based single-molecule DNA analysis. Nanomedicine 2, 459–481 (2007).

    CAS  Google Scholar 

  12. Branton, D. et al. The potential and challenges of nanopore sequencing. Nature Biotechnol. 26, 1146–1153 (2008). This review article assesses the feasibility of various nanopore sequencing techniques that are currently under development (both optical and electrical).

    CAS  Google Scholar 

  13. Deamer, D. W. Nanopore analysis of nucleic acids bound to exonucleases and polymerases. Annu. Rev. Biophys. 39, 79–90 (2010). This review article provides a historical perspective on the field of nanopore DNA sequencing and elaborates on nanopore-based enzyme-mediated sequencing approaches.

    CAS  Google Scholar 

  14. Iqbal, S. & Bashir, R. Nanopores: Sensing and Fundamental Biological Interactions (Springer, 2011).

    Google Scholar 

  15. Kasianowicz, J. J., Brandin, E., Branton, D. & Deamer, D. W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl Acad. Sci. USA 93, 13770–13773 (1996). This is the first experimental report of electronic detection of a DNA molecule passing through a nanopore (α-haemolysin) and marks the start of the nanopore sequencing field.

    Article  CAS  Google Scholar 

  16. Akeson, M., Branton, D., Kasianowicz, J. J., Brandin, E. & Deamer, D. W. Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. Biophys. J. 77, 3227–3233 (1999).

    CAS  Google Scholar 

  17. Meller, A. & Branton, D. Single molecule measurements of DNA transport through a nanopore. Electrophoresis 23, 2583–2591 (2002).

    CAS  Google Scholar 

  18. Benner, S. et al. Sequence-specific detection of individual DNA polymerase complexes in real time using a nanopore. Nature Nanotech. 2, 718–724 (2007).

    CAS  Google Scholar 

  19. Cockroft, S. L., Chu, J., Amorin, M. & Ghadiri, M. R. A single-molecule nanopore device detects DNA polymerase activity with single-nucleotide resolution. J. Am. Chem. Soc. 130, 818–820 (2008).

    CAS  Google Scholar 

  20. Lieberman, K. R. et al. Processive replication of single DNA molecules in a nanopore catalyzed by phi29 DNA polymerase. J. Am. Chem. Soc. 132, 17961–17972 (2010). Proof-of-principle experiments demonstrating that a biological nanopore with a coupled polymerase can be used for both strand sequencing and mechanistic studies of enzyme function.

    CAS  Google Scholar 

  21. Olasagasti, F. et al. Replication of individual DNA molecules under electronic control using a protein nanopore. Nature Nanotech. 5, 798–806 (2010).

    CAS  Google Scholar 

  22. Rincon-Restrepo, M., Mikhailova, E., Bayley, H. & Maglia, G. Controlled translocation of individual DNA molecules through protein nanopores with engineered molecular brakes. Nano Lett. 11, 746–750 (2011).

    CAS  Google Scholar 

  23. Mitchell, N. & Howorka, S. Chemical tags facilitate the sensing of individual DNA strands with nanopores. Angew. Chem. Int. Ed. 47, 5565–5568 (2008).

    CAS  Google Scholar 

  24. Clarke, J. et al. Continuous base identification for single-molecule nanopore DNA sequencing. Nature Nanotech. 4, 265–270 (2009). Proof-of-principle experiments demonstrating the discrimination of individual mononucleotides using a biological nanopore. Future efforts to couple this with an exonuclease might enable a 'sequencing by digestion' approach.

    CAS  Google Scholar 

  25. Stoddart, D., Heron, A. J., Mikhailova, E., Maglia, G. & Bayley, H. Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore. Proc. Natl Acad. Sci. USA 106, 7702–7707 (2009).

    CAS  Google Scholar 

  26. Faller, M., Niederweis, M. & Schulz, G. E. The structure of a mycobacterial outer-membrane channel. Science 303, 1189–1192 (2004).

    CAS  Google Scholar 

  27. Derrington, I. M. et al. Nanopore DNA sequencing with MspA. Proc. Natl Acad. Sci. USA 107, 16060–16065 (2010). Proof-of-principle experiments demonstrating duplex interrupted sequencing using MspA are reported here.

    CAS  Google Scholar 

  28. Wendell, D. et al. Translocation of double-stranded DNA through membrane-adapted phi29 motor protein nanopores. Nature Nanotech. 4, 765–772 (2009).

    CAS  Google Scholar 

  29. Jing, P., Haque, F., Shu, D., Montemagno, C. & Guo, P. X. One-way traffic of a viral motor channel for double-stranded DNA translocation. Nano Lett. 10, 3620–3627 (2010).

    CAS  Google Scholar 

  30. Groves, J. T., Ulman, N. & Boxer, S. G. Micropatterning fluid lipid bilayers on solid supports. Science 275, 651–653 (1997).

    CAS  Google Scholar 

  31. Mager, M. D. & Melosh, N. A. Nanopore-spanning lipid bilayers for controlled chemical release. Adv. Mater. 20, 4423–4427 (2008).

    CAS  Google Scholar 

  32. White, R. J. et al. Ionic conductivity of the aqueous layer separating a lipid bilayer membrane and a glass support. Langmuir 22, 10777–10783 (2006).

    CAS  Google Scholar 

  33. Venkatesan, B. M. et al. Lipid bilayer coated Al2O3 nanopore sensors: towards a hybrid biological solid-state nanopore. Biomed. Microdevices 13, 671–682 (2011).

    CAS  Google Scholar 

  34. Chung, M. & Boxer, S. G. Stability of DNA-tethered lipid membranes with mobile tethers. Langmuir 27, 5492–5497 (2011).

    CAS  Google Scholar 

  35. Langford, K. W., Penkov, B., Derrington, I. M. & Gundlach, J. H. Unsupported planar lipid membranes formed from mycolic acids of Mycobacterium tuberculosis. J. Lipid Res. 52, 272–277 (2011).

    CAS  Google Scholar 

  36. Knoll, W., Köper, I., Naumann, R. & Sinner, E-K. Tethered bimolecular lipid membranes — a novel model membrane platform. Electrochim. Acta 53, 6680–6689 (2008).

    CAS  Google Scholar 

  37. Storm, A. J., Chen, J. H., Ling, X. S., Zandbergen, H. W. & Dekker, C. Fabrication of solid-state nanopores with single nanometre precision. Nature Mater. 2, 537–540 (2003).

    CAS  Google Scholar 

  38. Venkatesan, B. M. et al. Highly sensitive, mechanically stable nanopore sensors for DNA analysis. Adv. Mater. 21, 2771–2776 (2009).

    CAS  Google Scholar 

  39. Kim, M. J., Wanunu, M., Bell, D. C. & Meller, A. Rapid fabrication of uniformly sized nanopores and nanopore arrays for parallel DNA analysis. Adv. Mater. 18, 3149–3153 (2006).

    CAS  Google Scholar 

  40. Nam, S-W., Rooks, M. J., Kim, K-B. & Rossnagel, S. M. Ionic field effect transistors with sub-10 nm multiple nanopores. Nano Lett. 9, 2044–2048 (2009).

    CAS  Google Scholar 

  41. McNally, B. et al. Optical recognition of converted DNA nucleotides for single-molecule DNA sequencing using nanopore arrays. Nano Lett. 10, 2237–2244 (2010). The use of hybridized fluorescent probes allows optical sequence readout.

    CAS  Google Scholar 

  42. Li, J. et al. Ion-beam sculpting at nanometre length scales. Nature 412, 166–169 (2001).

    CAS  Google Scholar 

  43. Salisbury, I. G., Timsit, R. S., Berger, S. D. & Humphreys, C. J. Nanometer scale electron beam lithography in inorganic materials. Appl. Phys. Lett. 45, 1289–1291 (1984).

    CAS  Google Scholar 

  44. Healy, K., Schiedt, B. & Morrison, A. P. Solid-state nanopore technologies for nanopore-based DNA analysis. Nanomedicine 2, 875–897 (2007).

    CAS  Google Scholar 

  45. Venkatesan, B. M., Shah, A. B., Zuo, J. M. & Bashir, R. DNA sensing using nanocrystalline surface-enhanced Al2O3 nanopore sensors. Adv. Funct. Mater. 20, 1266–1275 (2010).

    CAS  Google Scholar 

  46. Hoogerheide, D. P., Garaj, S. & Golovchenko, J. A. Probing surface charge fluctuations with solid-state nanopores. Phys. Rev. Lett. 102, 256804 (2009).

    Google Scholar 

  47. George, S. M. Atomic layer deposition: an overview. Chem. Rev. 110, 111–131 (2009).

    Google Scholar 

  48. Geim, A. K. Graphene: status and prospects. Science 324, 1530–1534 (2009).

    CAS  Google Scholar 

  49. Fischbein, M. D. & Drndic, M. Electron beam nanosculpting of suspended graphene sheets. Appl. Phys. Lett. 93, 113107–113103 (2008). This is the first report of nanopore fabrication in a suspended graphene membrane using an electron beam and has led to subsequent studies of DNA translocation through graphene nanopores.

    Google Scholar 

  50. Girit, Ç. Ö. et al. Graphene at the edge: stability and dynamics. Science 323, 1705–1708 (2009).

    CAS  Google Scholar 

  51. Garaj, S. et al. Graphene as a subnanometre trans-electrode membrane. Nature 467, 190–193 (2010). In addition to containing experimental data showing DNA translocation through a graphene nanopore (see also refs 52 and 53 ), this paper includes a calculation of the spatial resolution that is possible with monolayer graphene nanopore sensors.

    CAS  Google Scholar 

  52. Merchant, C. A. et al. DNA translocation through graphene nanopores. Nano Lett. 10, 2915–2921 (2010).

    CAS  Google Scholar 

  53. Schneider, G. F. et al. DNA translocation through graphene nanopores. Nano Lett. 10, 3163–3167 (2010).

    CAS  Google Scholar 

  54. Hall, J. E. Access resistance of a small circular pore. J. Gen. Physiol. 66, 531–532 (1975).

    CAS  Google Scholar 

  55. Song, B. et al. Atomic-scale electron-beam sculpting of near-defect-free graphene nanostructures. Nano Lett. 11, 2247–2250 (2011).

    CAS  Google Scholar 

  56. Li, J., Gershow, M., Stein, D., Brandin, E. & Golovchenko, J. A. DNA molecules and configurations in a solid-state nanopore microscope. Nature Mater. 2, 611–615 (2003).

    CAS  Google Scholar 

  57. Storm, A. J. et al. Fast DNA translocation through a solid-state nanopore. Nano Lett. 5, 1193–1197 (2005).

    CAS  Google Scholar 

  58. Wanunu, M., Morrison, W., Rabin, Y., Grosberg, A. Y. & Meller, A. Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient. Nature Nanotech. 5, 160–165 (2010).

    CAS  Google Scholar 

  59. Calin, G. A. & Croce, C. M. MicroRNA signatures in human cancers. Nature Rev. Cancer 6, 857–866 (2006).

    CAS  Google Scholar 

  60. Volinia, S. et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl Acad. Sci. USA 103, 2257–2261 (2006).

    CAS  Google Scholar 

  61. Wanunu, M. et al. Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nature Nanotech. 5, 807–814 (2010).

    CAS  Google Scholar 

  62. Strathdee, G. & Brown, R. Aberrant DNA methylation in cancer: potential clinical interventions. Expert Rev. Mol. Med. 4, 1–17 (2002).

    CAS  Google Scholar 

  63. Lee, W. H., Isaacs, W. B., Bova, G. S. & Nelson, W. G. CG island methylation changes near the GSTP1 gene in prostatic carcinoma cells detected using the polymerase chain reaction: A new prostate cancer biomarker. Cancer Epidem. Biomar. 6, 443–450 (1997).

    CAS  Google Scholar 

  64. Laird, P. W. The power and the promise of DNA methylation markers. Nature Rev. Cancer 3, 253–266 (2003).

    CAS  Google Scholar 

  65. Mirsaidov, U. et al. Nanoelectromechanics of methylated DNA in a synthetic nanopore. Biophys. J. 96, L32–L34 (2009).

    CAS  Google Scholar 

  66. Wanunu, M. et al. Discrimination of methylcytosine from hydroxymethylcytosine in DNA molecules. J. Am. Chem. Soc. 133, 486–492 (2010).

    Google Scholar 

  67. Botstein, D. & Risch, N. Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nature Genet. 33, 228–237 (2003).

    CAS  Google Scholar 

  68. Zhao, Q. et al. Detecting SNPs using a synthetic nanopore. Nano Lett. 7, 1680–1685 (2007).

    CAS  Google Scholar 

  69. Singer, A. et al. Nanopore based sequence specific detection of duplex DNA for genomic profiling. Nano Lett. 10, 738–742 (2010).

    CAS  Google Scholar 

  70. Iqbal, S. M., Akin, D. & Bashir, R. Solid-state nanopore channels with DNA selectivity. Nature Nanotech. 2, 243–248 (2007).

    CAS  Google Scholar 

  71. Wanunu, M. & Meller, A. Chemically modified solid-state nanopores. Nano Lett. 7, 1580–1585 (2007).

    CAS  Google Scholar 

  72. Siwy, Z. S. & Howorka, S. Engineered voltage-responsive nanopores. Chem. Soc. Rev. 39, 1115–1132 (2009).

    Google Scholar 

  73. Kowalczyk, S. W. et al. Single-molecule transport across an individual biomimetic nuclear pore complex. Nature Nanotech. 6, 433–438 (2011).

    CAS  Google Scholar 

  74. Yusko, E. C. et al. Controlling protein translocation through nanopores with bio-inspired fluid walls. Nature Nanotech. 6, 253–260 (2011).

    CAS  Google Scholar 

  75. Hall, A. R. et al. Hybrid pore formation by directed insertion of alpha-haemolysin into solid-state nanopores. Nature Nanotech. 5, 874–877 (2010).

    CAS  Google Scholar 

  76. Vercoutere, W. et al. Rapid discrimination among individual DNA hairpin molecules at single-nucleotide resolution using an ion channel. Nature Biotechnol. 19, 248–252 (2001).

    CAS  Google Scholar 

  77. Eid, J. et al. Real-time DNA sequencing from single polymerase molecules. Science 323, 133–138 (2009).

    CAS  Google Scholar 

  78. Drmanac, R. et al. Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays. Science 327, 78–81 (2010).

    CAS  Google Scholar 

  79. Rothberg, J. M. et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature 475, 348–352 (2011).

    CAS  Google Scholar 

  80. http://www.genome.gov/27527584.

  81. Karnik, R., Duan, C., Castelino, K., Daiguji, H. & Majumdar, A. Rectification of ionic current in a nanofluidic diode. Nano Lett. 7, 547–551 (2007).

    CAS  Google Scholar 

  82. Jin, X. & Aluru, N. R. Gated transport in nanofluidic devices. Microfluid. Nanofluid. 11, 297–306 (2011).

    Google Scholar 

  83. Liu, H. et al. Translocation of single-stranded DNA through single-walled carbon nanotubes. Science 327, 64–67 (2010).

    CAS  Google Scholar 

  84. Nelson, T., Zhang, B. & Prezhdo, O. V. Detection of nucleic acids with graphene nanopores: ab initio characterization of a novel sequencing device. Nano Lett. 10, 3237–3242 (2010).

    CAS  Google Scholar 

  85. Min, S. K., Kim, W. Y., Cho, Y. & Kim, K. S. Fast DNA sequencing with a graphene-based nanochannel device. Nature Nanotech. 6, 162–165 (2011).

    CAS  Google Scholar 

  86. Postma, H. W. C. Rapid sequencing of individual DNA molecules in graphene nanogaps. Nano Lett. 10, 420–425 (2010).

    CAS  Google Scholar 

  87. Prasongkit, J., Grigoriev, A., Pathak, B., Ahuja, R. & Scheicher, R. H. Transverse conductance of DNA nucleotides in a graphene nanogap from first principles. Nano Lett. 11, 1941–1945 (2011).

    CAS  Google Scholar 

  88. Luan, B. et al. Base-by-base ratcheting of single stranded DNA through a solid-state nanopore. Phys. Rev. Lett. 104, 238103 (2010). IBM's DNA transistor architecture and proposed approach to nanopore-based single-molecule DNA sequencing are presented here.

    Google Scholar 

  89. Huang, S. et al. Identifying single bases in a DNA oligomer with electron tunnelling. Nature Nanotech. 5, 868–873 (2010).

    CAS  Google Scholar 

  90. Zwolak, M. & Di Ventra, M. Physical approaches to DNA sequencing and detection. Rev. Mod. Phys. 80, 141–165 (2008).

    Google Scholar 

  91. Tanaka, H. & Kawai, T. Partial sequencing of a single DNA molecule with a scanning tunnelling microscope. Nature Nanotech. 4, 518–522 (2009).

    CAS  Google Scholar 

  92. Tsutsui, M., Taniguchi, M., Yokota, K. & Kawai, T. Identifying single nucleotides by tunnelling current. Nature Nanotech. 5, 286–290 (2010). This is the first report of a nanofabricated gap junction being used to discriminate individual nucleotides through electron tunnelling measurements.

    CAS  Google Scholar 

  93. Taniguchi, M., Tsutsui, M., Yokota, K. & Kawai, T. Fabrication of the gating nanopore device. Appl. Phys. Lett. 95, 123701–123703 (2009).

    Google Scholar 

  94. Ivanov, A. P. et al. DNA tunneling detector embedded in a nanopore. Nano Lett. 11, 279–285 (2010).

    Google Scholar 

  95. Asmann, Y. W., Kosari, F., Wang, K., Cheville, J. C. & Vasmatzis, G. Identification of differentially expressed genes in normal and malignant prostate by electronic profiling of expressed sequence tags. Cancer Res. 62, 3308–3314 (2002).

    CAS  Google Scholar 

  96. Feldman, A. L. et al. Discovery of recurrent t(6;7)(p25.3;q32.3) translocations in ALK-negative anaplastic large cell lymphomas by massively parallel genomic sequencing. Blood 117, 915–919 (2010).

    Google Scholar 

  97. Ling, X. S., Bready, B. & Pertsinidis, A. Hybridization-assisted nanopore sequencing of nucleic acids. US patent 2007 0190542 (2007). This approach, called HANS, is being commercially developed by NABsys: 6-mer oligonucleotide probes are hybridized to ssDNA and current versus time traces reveal the position of the probe on the ssDNA template.

  98. Astier, Y., Braha, O. & Bayley, H. Toward single molecule DNA sequencing: direct identification of ribonucleoside and deoxyribonucleoside 5′-monophosphates by using an engineered protein nanopore equipped with a molecular adapter. J. Am. Chem. Soc. 128, 1705–1710 (2006).

    CAS  Google Scholar 

  99. Lagerqvist, J., Zwolak, M. & Di Ventra, M. Fast DNA sequencing via transverse electronic transport. Nano Lett. 6, 779–782 (2006).

    CAS  Google Scholar 

  100. Heng, J. B. et al. Beyond the gene chip. Bell Labs Tech. J. 10, 5–22 (2005).

    CAS  Google Scholar 

  101. Gracheva, M. E. et al. Simulation of the electric response of DNA translocation through a semiconductor nanopore-capacitor. Nanotechnology 17, 622–633 (2006).

    CAS  Google Scholar 

  102. Sigalov, G., Comer, J., Timp, G. & Aksimentiev, A. Detection of DNA sequences using an alternating electric field in a nanopore capacitor. Nano Lett. 8, 56–63 (2007).

    Google Scholar 

  103. Meller, A., Nivon, L., Brandin, E., Golovchenko, J. & Branton, D. Rapid nanopore discrimination between single polynucleotide molecules. Proc. Natl Acad. Sci. USA 97, 1079–1084 (2000).

    CAS  Google Scholar 

  104. Howorka, S., Cheley, S. & Bayley, H. Sequence-specific detection of individual DNA strands using engineered nanopores. Nature Biotechnol. 19, 636–639 (2001).

    CAS  Google Scholar 

  105. Bates, M., Burns, M. & Meller, A. Dynamics of DNA molecules in a membrane channel probed by active control techniques. Biophys. J. 84, 2366–2372 (2003).

    CAS  Google Scholar 

  106. Borsenberger, V., Mitchell, N. & Howorka, S. Chemically labeled nucleotides and oligonucleotides encode DNA for sensing with nanopores. J. Am. Chem. Soc. 131, 7530–7531 (2009).

    CAS  Google Scholar 

  107. Chen, P. et al. Probing single DNA molecule transport using fabricated nanopores. Nano Lett. 4, 2293–2298 (2004).

    CAS  Google Scholar 

  108. Storm, A. J., Chen, J. H., Zandbergen, H. W. & Dekker, C. Translocation of double-strand DNA through a silicon oxide nanopore. Phys. Rev. E 71, 051903 (2005).

    CAS  Google Scholar 

  109. Fologea, D., Uplinger, J., Thomas, B., McNabb, D. S. & Li, J. Slowing DNA translocation in a solid-state nanopore. Nano Lett. 5, 1734–1737 (2005).

    CAS  Google Scholar 

  110. Kim, Y. R. et al. Nanopore sensor for fast label-free detection of short double-stranded DNAs. Biosensors Bioelectron. 22, 2926–2931 (2007).

    CAS  Google Scholar 

  111. Wanunu, M., Sutin, J., McNally, B., Chow, A. & Meller, A. DNA translocation governed by interactions with solid-state nanopores. Biophys. J. 95, 4716–4725 (2008).

    CAS  Google Scholar 

  112. Chen, Z. et al. DNA translocation through an array of kinked nanopores. Nature Mater. 9, 667–675 (2010).

    CAS  Google Scholar 

Download references

Acknowledgements

B.M.V. is a trainee supported by the Midwestern Cancer Nanotechnology Training Center (NIH-NCI R25 CA154015). Support from the National Institutes of Health (R21 CA155863) and the National Science Foundation (EEC-0425626) is also acknowledged. The authors thank J. Hanlon-Sinn (Beckman Institute of Advanced Technology, University of Illinois at Urbana-Champaign) for the images in Fig. 6, and M. Drndic (University of Pennsylvania) for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashid Bashir.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venkatesan, B., Bashir, R. Nanopore sensors for nucleic acid analysis. Nature Nanotech 6, 615–624 (2011). https://doi.org/10.1038/nnano.2011.129

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.129

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing