Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ultrastrong adhesion of graphene membranes

Abstract

As mechanical structures enter the nanoscale regime, the influence of van der Waals forces increases. Graphene is attractive for nanomechanical systems1,2 because its Young's modulus and strength are both intrinsically high, but the mechanical behaviour of graphene is also strongly influenced by the van der Waals force3,4. For example, this force clamps graphene samples to substrates, and also holds together the individual graphene sheets in multilayer samples. Here we use a pressurized blister test to directly measure the adhesion energy of graphene sheets with a silicon oxide substrate. We find an adhesion energy of 0.45 ± 0.02 J m−2 for monolayer graphene and 0.31 ± 0.03 J m−2 for samples containing two to five graphene sheets. These values are larger than the adhesion energies measured in typical micromechanical structures and are comparable to solid–liquid adhesion energies5,6,7. We attribute this to the extreme flexibility of graphene, which allows it to conform to the topography of even the smoothest substrates, thus making its interaction with the substrate more liquid-like than solid-like.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pressurizing graphene membranes.
Figure 2: Delaminating graphene membranes.
Figure 3: Graphene/SiO2 adhesion energies.
Figure 4: Elastic constants and clamping of graphene membranes.

Similar content being viewed by others

References

  1. Bunch, J. S. et al. Electromechanical resonators from graphene sheets. Science 315, 490–493 (2007).

    Article  CAS  Google Scholar 

  2. Meyer, J. C. et al. The structure of suspended graphene sheets. Nature 446, 60–63 (2007).

    Article  CAS  Google Scholar 

  3. Bunch, J. S. et al. Impermeable atomic membranes from graphene sheets. Nano Lett. 8, 2458–2462 (2008).

    Article  CAS  Google Scholar 

  4. Lee, C. et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

    Article  CAS  Google Scholar 

  5. Maboudian, R. & Howe, R. T. Critical review: adhesion in surface micromechanical structures. J. Vac. Sci. Technol. B 15, 1–20 (1997).

    Article  CAS  Google Scholar 

  6. Israelachvilli, J. Intermolecular and Surface Forces (Academic Press, 2011).

  7. Delrio, F. W. et al. The role of van der Waals forces in adhesion of micromachined surfaces. Nature Mater. 4, 629–634 (2005).

    Article  CAS  Google Scholar 

  8. Gent, A. N. & Lewandowski, L. H. Blow-off pressures for adhering layers. J. Appl. Polym. Sci. 33, 1567–1577 (1987).

    Article  CAS  Google Scholar 

  9. Wan, K. & Mai, Y. Fracture mechanics of a new blister test with stable crack growth. Acta Metall. Mater. 43, 4109–4115 (1995).

    Article  CAS  Google Scholar 

  10. Hencky, H. Über den spannungszustand in kreisrunden platten mit verschwindender biegungssteiflgkeit. Z. fur Mathematik und Physik 63, 311–317 (1915).

    Google Scholar 

  11. Williams, J. Energy release rates for the peeling of flexible membranes and the analysis of blister tests. Int. J. Fracture 87, 265–288 (1997).

    Article  Google Scholar 

  12. Blakslee, O. L. et al. Elastic constants of compression-annealed pyrolytic graphite. J. Appl. Phys. 41, 3373–3382 (1970).

    Article  CAS  Google Scholar 

  13. DelRio, F. W. et al. The effect of nanoparticles on rough surface adhesion. J. Appl. Phys. 99, 104304 (2006).

    Article  Google Scholar 

  14. DelRio, F. W. et al. Elastic and adhesive properties of alkanethiol self-assembled monolayers on gold. Appl. Phys. Lett. 94, 131909 (2009).

    Article  Google Scholar 

  15. Buks, E. & Roukes, M. L. Stiction, adhesion energy, and the Casimir effect in micromechanical systems. Phys. Rev. B 63, 33402 (2001).

    Article  Google Scholar 

  16. Zong, Z. et al. Direct measurement of graphene adhesion on silicon surface by intercalation of nanoparticles. J. Appl. Phys. 107, 026104 (2010).

    Article  Google Scholar 

  17. Yu, M. F., Kowalewski, T. & Ruoff, R. S. Structural analysis of collapsed, and twisted and collapsed, multiwalled carbon nanotubes by atomic force microscopy. Phys. Rev. Lett. 86, 87–90 (2001).

    Article  CAS  Google Scholar 

  18. Cullen, W. et al. High-fidelity conformation of graphene to SiO2 topographic features. Phys. Rev. Lett. 105, 215504 (2010).

    Article  CAS  Google Scholar 

  19. Rudenko, A. N. et al. Local interfacial interactions between amorphous SiO2 and supported graphene. Preprint at http://arxiv.org/abs/1105.1655 (2011).

  20. Aitken, Z. H. & Huang, R. Effects of mismatch strain and substrate surface corrugation on morphology of supported monolayer graphene. J. Appl. Phys. 107, 123531 (2010).

    Article  Google Scholar 

  21. Li, T. & Zhang, Z. Substrate-regulated morphology of graphene. J. Phys. D 43, 075303 (2010).

    Article  Google Scholar 

  22. Kusminskiy, S. V. et al. Pinning of a two-dimensional membrane on top of a patterned substrate: the case of graphene. Phys. Rev. B 83, 165405 (2011).

    Article  Google Scholar 

  23. Suk, J. W. et al. Mechanical properties of monolayer graphene oxide. ACS Nano 4, 6557–6564 (2010).

    Article  CAS  Google Scholar 

  24. Ruiz-Vargas, C. S. et al. Softened elastic response and unzipping in chemical vapor deposition graphene membranes. Nano Lett. 11, 2259–2263 (2011).

    Article  CAS  Google Scholar 

  25. Lee, C. et al. Frictional characteristics of atomically thin sheets. Science 328, 76–80 (2010).

    Article  CAS  Google Scholar 

  26. Lui, C. H. et al. Ultraflat graphene. Nature 462, 339–341 (2009).

    Article  CAS  Google Scholar 

  27. Capasso, F. et al. Casimir forces and quantum electrodynamical torques: physics and nanomechanics. IEEE J. Sel. Top. Quant. 13, 400–414 (2007).

    Article  CAS  Google Scholar 

  28. Lu, Z. & Dunn, M. L. van der Waals adhesion of graphene membranes. J. Appl. Phys. 107, 044301 (2010).

    Article  Google Scholar 

  29. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  CAS  Google Scholar 

  30. Koh, Y. K. et al. Reliably counting atomic planes of few-layer graphene (n > 4). ACS Nano 5, 269–274 (2011).

    Article  CAS  Google Scholar 

  31. Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (NSF, grant nos. 0900832 and 1054406), the NSF Industry/University Cooperative Research Center for Membrane Science, Engineering and Technology at the University of Colorado at Boulder, and the DARPA Center on Nanoscale Science and Technology for Integrated Micro/Nano-Electromechanical Transducers (DARPA/SPAWAR, grant no. N66001-10-1-4007). Sample fabrication was performed at the University of Colorado node of the National Nanofabrication Users Network, funded by the NSF. The authors thank G. Acosta, L. Wang and X. Liu for help with fabrication and R. Raj for use of the Raman microscope.

Author information

Authors and Affiliations

Authors

Contributions

S.P.K. performed the experiments. S.P.K. and J.S.B. conceived and designed the experiments. N.G.B. and M.L.D. developed the theory and modelling. All authors interpreted the results and co-wrote the manuscript.

Corresponding author

Correspondence to J. Scott Bunch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 995 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koenig, S., Boddeti, N., Dunn, M. et al. Ultrastrong adhesion of graphene membranes. Nature Nanotech 6, 543–546 (2011). https://doi.org/10.1038/nnano.2011.123

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.123

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing