Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles

An Addendum to this article was published on 04 July 2012

This article has been updated

Abstract

Nanoparticles are known to self-assemble into larger structures through growth processes that typically occur continuously and depend on the uniformity of the individual nanoparticles. Here, we show that inorganic nanoparticles with non-uniform size distributions can spontaneously assemble into uniformly sized supraparticles with core–shell morphologies. This self-limiting growth process is governed by a balance between electrostatic repulsion and van der Waals attraction, which is aided by the broad polydispersity of the nanoparticles. The generic nature of the interactions creates flexibility in the composition, size and shape of the constituent nanoparticles, and leads to a large family of self-assembled structures, including hierarchically organized colloidal crystals.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electron microscopy and size distribution for supraparticles.
Figure 2: Intermediate stages of formation of supraparticle at 40 °C and detailed structural characterization of supraparticles.
Figure 3: Computer simulation results.
Figure 4: Analogous supraparticle assemblies from different materials.

Similar content being viewed by others

Change history

  • 26 August 2011

    In the version of this Article originally published online, the full list of corresponding authors should have been Zhiyong Tang, Sharon C. Glotzer and Nicholas A. Kotov. This has been corrected in all versions of the Article.

  • 25 May 2012

    This Article has an addendum associated with it, for details see pdf.

References

  1. Tang, Z., Kotov, N. A. & Giersig, M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 297, 237–240 (2002).

    Article  CAS  Google Scholar 

  2. Tang, Z., Zhang, Z. L., Wang, Y., Glotzer, S. C. & Kotov, N. A. Self-assembly of CdTe nanocrystals into free-floating sheets. Science 314, 274–278 (2006).

    Article  CAS  Google Scholar 

  3. Srivastava, S. et al. Light-controlled self-assembly of semiconductor nanoparticles into twisted ribbons. Science 327, 1355–1359 (2010).

    Article  CAS  Google Scholar 

  4. Glotzer, S. C. & Solomon, M. J. Anisotropy of building blocks and their assembly into complex structures. Nature Mater. 6, 557–562 (2007).

    Article  Google Scholar 

  5. Dong, A., Chen, J., Vora, P. M., Kikkawa, J. M. & Murray, C. B. Binary nanocrystal superlattice membranes self-assembled at the liquid–air interface. Nature 466, 474–477 (2010).

    Article  CAS  Google Scholar 

  6. Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O'Brien, S. & Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 439, 55–59 (2006).

    Article  CAS  Google Scholar 

  7. Murray, C. B., Kagan, C. R. & Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 30, 545–610 (2000).

    Article  CAS  Google Scholar 

  8. Pileni, M. P. Nanocrystal self-assemblies: fabrication and collective properties. J. Phys. Chem. B 105, 3358–3371 (2001).

    Article  CAS  Google Scholar 

  9. Sun, S., Murray, C. B., Weller, D., Folks, L. & Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989–1992 (2000).

    Article  CAS  Google Scholar 

  10. Nikoobakht, B., Wang, Z. L. & El-Sayed, M. A. Self-assembly of gold nanorods. J. Phys. Chem. B 104, 8635–8640 (2000).

    Article  CAS  Google Scholar 

  11. Sun, Y. & Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176–2179 (2002).

    Article  CAS  Google Scholar 

  12. Cölfen, H. & Mann, S. Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angew. Chem. Int. Ed. 42, 2350–2365 (2003).

    Article  Google Scholar 

  13. Talapin, D. V. et al. CdSe and CdSe/CdS nanorod solids. J. Am. Chem. Soc. 126, 12984–12988 (2004).

    Article  CAS  Google Scholar 

  14. Niederberger, M. & Cölfen, H. Oriented attachment and mesocrystals: non-classical crystallization mechanisms based on nanoparticle assembly. Phys. Chem. Chem. Phys. 8, 3271–3287 (2006).

    Article  CAS  Google Scholar 

  15. Tao, A., Sinsermsuksakul, P. & Yang, P. Tunable plasmonic lattices of silver nanocrystals. Nature Nanotech. 2, 435–440 (2007).

    Article  CAS  Google Scholar 

  16. Zhang, Z., Tang, Z., Kotov, N. A. & Glotzer, S. C. Simulations and analysis of self-assembly of CdTe nanoparticles into wires and sheets. Nano. Lett. 7, 1670–1675 (2007).

    Article  CAS  Google Scholar 

  17. Lee, J. S., Shevchenko, E. V. & Talapin, D. V. Au–PbS core–shell nanocrystals: plasmonic absorption enhancement and electrical doping via intra-particle charge transfer. J. Am. Chem. Soc. 130, 9673–9675 (2008).

    Article  CAS  Google Scholar 

  18. Jones, M. R. et al. DNA–nanoparticle superlattices formed from anisotropic building blocks. Nature Mater. 9, 913–917 (2010).

    Article  CAS  Google Scholar 

  19. Quan, Z. & Fang, J. Superlattices with non-spherical building blocks. Nano Today 5, 390–411 (2010).

    Article  CAS  Google Scholar 

  20. Maye, M. M. et al. Size-controlled assembly of gold nanoparticles induced by a tridentate thioether ligand. J. Am. Chem. Soc. 125, 9906–9907 (2003).

    Article  CAS  Google Scholar 

  21. Narayanaswamy, A., Xu, H., Pradhan, N. & Peng, X. Crystalline nanoflowers with different chemical compositions and physical properties grown by limited ligand protection. Angew. Chem. Int. Ed. 45, 5361–5364 (2006).

    Article  CAS  Google Scholar 

  22. Zhuang, J., Wu, H., Yang, Y. & Cao, Y. C. Supercrystalline colloidal particles from artificial atoms. J. Am. Chem. Soc. 129, 14166–14167 (2007).

    Article  CAS  Google Scholar 

  23. Liu, K. et al. Step-growth polymerization of inorganic nanoparticles. Science 329, 197–200 (2010).

    Article  CAS  Google Scholar 

  24. Lvov, Y., Decher, G. & Möhwald, H. Assembly, structural characterization, and thermal behavior of layer-by-layer deposited ultrathin films of poly(vinyl sulfate) and poly(allylamine). Langmuir 9, 481–486 (1993).

    Article  CAS  Google Scholar 

  25. Billingsley, P. Probability and Measure 3rd edn (John Wiley & Sons, 1995).

    Google Scholar 

  26. Persson, A. E., Schoeman, B. J., Sterte, J. & Otterstedt, J. E. The synthesis of discrete colloidal particles of TPA-silicalite-1. Zeolites 14, 557–567 (1994).

    Article  CAS  Google Scholar 

  27. Distaso, M., Klupp Taylor, R. N., Taccardi, N., Wasserscheid, P. & Peukert, W. Influence of the counterion on the synthesis of ZnO mesocrystals under solvothermal conditions. Chem. Eur. J. 17, 2923–2930 (2011).

    Article  CAS  Google Scholar 

  28. Nishizawa, M., Menon, V. P. & Martin, C. R. Metal nanotubule membranes with electrochemically switchable ion-transport selectivity. Science 268, 700–702 (1995).

    Article  CAS  Google Scholar 

  29. Koktysh, D. S. et al. Biomaterials by design: layer-by-layer assembled ion-selective and biocompatible films of TiO2 nanoshells for neurochemical monitoring. Adv. Funct. Mater. 12, 255–265 (2002).

    Article  CAS  Google Scholar 

  30. Ohara, P. C., Leff, D. V., Heath, J. R. & Gelbart, W. M. Crystallization of opals from polydisperse nanoparticles. Phys. Rev. Lett. 75, 3466–3469 (1995).

    Article  CAS  Google Scholar 

  31. Bolhuis, P. G. & Kofke, D. A. Monte Carlo study of freezing of polydisperse hard spheres. Phys. Rev. E 54, 634–643 (1996).

    Article  CAS  Google Scholar 

  32. Bates, M. A. & Frenkel, D. Influence of polydispersity on the phase behavior of colloidal liquid crystals: a Monte Carlo simulation study. J. Chem. Phys. 109, 6193–6199 (1998).

    Article  CAS  Google Scholar 

  33. Orlik, R., Mitus, A. C., Kowalczyk, B., Patashinski, A. Z. & Grzybowski, B. A. Computer simulation of self-assembly (crystallization) of oppositely charged nanoparticles with various size distributions. J. Non-Cryst. Solids 355, 1360–1369 (2009).

    Article  CAS  Google Scholar 

  34. Phillips, C. L., Iacovella, C. R. & Glotzer, S. C. Stability of the double gyroid phase to nanoparticle polydispersity in polymer-tethered nanosphere systems. Soft Matter 6, 1693–1703 (2010).

    Article  CAS  Google Scholar 

  35. Kalsin, A. M. et al. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science 312, 420–424 (2006).

    Article  CAS  Google Scholar 

  36. Warner, M. G. & Hutchison, J. E. Linear assemblies of nanoparticles electrostatically organized on DNA scaffolds. Nature Mater. 2, 272–277 (2003).

    Article  CAS  Google Scholar 

  37. Manchester, M. & Steinmetz, N. F. Viruses and Nanotechnology (Springer, 2009).

    Book  Google Scholar 

  38. Feldheim, D. L. & Foss, C. A. Metal Nanoparticles: Synthesis, Characterization, and Applications (Marcel-Dekker, 2002).

    Google Scholar 

  39. Chen, T., Zhang, Z. L. & Glotzer, S. C. A precise packing sequence for self-assembled convex structures. Proc. Natl Acad. Sci. USA 104, 717–722 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the 100 Talents Program of the Chinese Academy of Sciences (Z.Y.T.), the National Natural Science Foundation for Distinguished Youth Scholars of China (21025310, Z.Y.T.) the National Research Fund for Fundamental Key Project no. 2009CB930401 (Z.Y.T.), National Natural Science Foundation of China (nos 91027011 and 20973047, Z.Y.T.). This material is based on work supported in part by the US Army Research Office (grant award no. W911NF-10-1-0518, S.C.G. and N.A.K.). S.C.G. and T.D.N. also acknowledge support from the James S. McDonnell Foundation 21st Century Science Research Award/Studying Complex Systems (award no. 220020139). This material is based on work supported by the Department of Defense, Office of the Director, Defense Research and Engineering (DOD/DDRE) (award no. N00244-09-1-0062, S.C.G.). Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the DOD/DDRE. Use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE (contract no. DE-AC02-06CH11357). This material is based on work partially supported by the Center for Solar and Thermal Energy Conversion, an Energy Frontier Research Center funded by the US DOE, Office of Science, Basic Energy Sciences (award no. DE-SC0000957, N.A.K.). The authors acknowledge support from the National Science Foundation (grant nos ECS-0601345, EFRI-BSBA 0938019, CBET 0933384 and CBET 0932823, N.A.K.). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF. The work is also partially supported by NIH 1R21CA121841-01A2 (NAK). S.C.G. is grateful to the University of Michigan Center for Advanced Computing for cluster support. The authors thank the University of Michigan's EMAL for its assistance with electron microscopy, and for NSF grant no. DMR-9871177 for funding for the JEOL 2010F analytical electron microscope used in this work. T.D.N. acknowledges support from the Vietnam Education Foundation. B.L. thanks the Argonne National Laboratory for use of the APS. Work at the Center for Nanoscale Materials was supported by the Office of Science, Office of Basic Energy Sciences, of the US DOE (contract no. DE-AC02-06CH-11357). P.P. acknowledges the support of a Willard Frank Libby postdoctoral fellowship from Argonne National Laboratory.

Author information

Authors and Affiliations

Authors

Contributions

Y.S.X., Z.Y.T., and N.A.K. conceived and designed the experiments. Y.S.X. performed the experiments. T.D.N., A.S. and S.C.G. designed and performed the computer simulations. B.L. and P.P. carried out SAXS measurements and corresponding data analysis. M.Y. contributed to the nanoparticle synthesis. Y.S.X., T.D.N., B.L., Z.Y.T., S.C.G. and N.A.K. analysed the data. Y.S.X., T.D.N., B.L., Z.Y.T., S.C.G. and N.A.K. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Zhiyong Tang, Sharon C. Glotzer or Nicholas A. Kotov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3190 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, Y., Nguyen, T., Yang, M. et al. Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles. Nature Nanotech 6, 580–587 (2011). https://doi.org/10.1038/nnano.2011.121

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.121

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing