Light–induced disassembly of self-assembled vesicle-capped nanotubes observed in real time


Molecular self-assembly is the basis for the formation of numerous artificial nanostructures1,2. The self-organization of peptides3,4,5,6, amphiphilic molecules composed of fused benzene rings7,8,9,10 and other functional molecules11,12,13,14,15 into nanotubes is of particular interest. However, the design of dynamic, complex self-organized systems that are responsive to external stimuli remains a significant challenge16. Here, we report self-assembled, vesicle-capped nanotubes that can be selectively disassembled by irradiation. The walls of the nanotubes are 3-nm-thick bilayers and are made from amphiphilic molecules with two hydrophobic legs that interdigitate when the molecules self-assemble into bilayers. In the presence of phospholipids, a phase separation between the phospholipids and the amphiphilic molecules creates nanotubes, which are end-capped by vesicles that can be chemically altered or removed and reattached without affecting the nanotubes. The presence of a photoswitchable and fluorescent core in the amphiphilic molecules allows fast and highly controlled disassembly of the nanotubes on irradiation, and distinct disassembly processes can be observed in real time using fluorescence microscopy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic representation of assembly and disassembly of vesicle-capped nanotubes.
Figure 2: Structure and properties of amphiphilic switch 1 and self-assembled nanotube morphologies.
Figure 3: Analysis of changes to morphology.
Figure 4: Images of changes in tubular morphology as a function of time.


  1. 1

    Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418–2421 (2002).

    CAS  Article  Google Scholar 

  2. 2

    Du, J. & O'Reilly, R. K. Advances and challenges in smart and functional polymer vesicles. Soft Matter 5, 3544–3561 (2009).

    CAS  Article  Google Scholar 

  3. 3

    Ghadiri, M. R., Granja, J. R. & Buehler, L. K. Artificial transmembrane ion channels from self-assembling peptide nanotubes. Nature 369, 301–304 (1994).

    CAS  Article  Google Scholar 

  4. 4

    Reches, M. & Gazit, E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300, 625–627 (2003).

    CAS  Article  Google Scholar 

  5. 5

    Adler-Abramovich, L. et al. Self-assembled arrays of peptide nanotubes by vapour deposition. Nature Nanotech. 4, 849–854 (2009).

    CAS  Article  Google Scholar 

  6. 6

    Lin, Y., Qiao, Y., Tang, P., Li, Z. & Huang, J. Controllable self-assembled laminated nanoribbons from dipeptide-amphiphile bearing azobenzene moiety. Soft Matter 7, 2762–2769 (2011).

    CAS  Article  Google Scholar 

  7. 7

    Hill, J. P. et al. Self-assembled hexa-peri-hexabenzocoronene graphitic nanotube. Science 304, 1481–1483 (2004).

    CAS  Article  Google Scholar 

  8. 8

    Borzsonyi, G. et al. Water-soluble J-type rosette nanotubes with giant molar ellipticity. J. Am. Chem. Soc. 132, 15136–15139 (2010).

    CAS  Article  Google Scholar 

  9. 9

    Yin, M. et al. Functionalization of self-assembled hexa-peri-hexabenzocoronene fibers with peptides for bioprobing. J. Am. Chem. Soc. 131, 14618–14619 (2009).

    CAS  Article  Google Scholar 

  10. 10

    Zhang, W., Jin, W., Fukushima, T., Ishii, N. & Aida, T. Metal-ion-coated graphitic nanotubes: controlled self-assembly of a pyridyl-appended gemini-shaped hexabenzocoronene amphiphile. Angew. Chem. Int. Ed. 48, 4747–4750 (2009).

    CAS  Article  Google Scholar 

  11. 11

    Shao, H. et al. Amphiphilic self-assembly of an n-type nanotube. Angew. Chem. Int. Ed. 49, 7688–7691 (2010).

    CAS  Article  Google Scholar 

  12. 12

    Kim, H. et al. Self-dissociating tubules from helical stacking of noncovalent macrocycles. Angew. Chem. Int. Ed. 49, 8471–8475 (2010).

    CAS  Article  Google Scholar 

  13. 13

    Eisele, D. M., Knoester, J., Kirstein, S., Rabe, J. P. & Vanden Bout, D. A. Uniform exciton fluorescence from individual molecular nanotubes immobilized on solid substrates. Nature Nanotech. 4, 658–663 (2009).

    CAS  Article  Google Scholar 

  14. 14

    Palmer, L. C. & Stupp, S. I. Molecular self-assembly into one-dimensional nanostructures. Acc. Chem. Res. 41, 1674–1684 (2008).

    CAS  Article  Google Scholar 

  15. 15

    Jin, W. et al. Self-assembled graphitic nanotubes with one-handed helical arrays of a chiral amphiphilic molecular graphene. Proc. Natl Acad. Sci. USA 102, 10801–10806 (2005).

    CAS  Article  Google Scholar 

  16. 16

    Roy, D., Cambre, J. N. & Sumerlin, B. S. Future perspectives and recent advances in stimuli-responsive materials. Prog. Polym. Sci. 35, 278–301 (2010).

    CAS  Article  Google Scholar 

  17. 17

    Service, R. F. How far can we push chemical self-assembly. Science 309, 95 (2005).

    CAS  Article  Google Scholar 

  18. 18

    Vollmer, M. S., Clark, T. D., Steinem, C. & Ghadiri, M. R. Photoswitchable hydrogen-bonding in self-organized cylindrical peptide systems. Angew. Chem. Int. Ed. 38, 1598–1601 (1999).

    CAS  Article  Google Scholar 

  19. 19

    Goodwin, A. P., Mynar, J. L., Ma, Y. Z., Fleming, G. R. & Frechet, J. M. J. Synthetic micelle sensitive to IR light via a two-photon process. J. Am. Chem. Soc. 127, 9952–9953 (2005).

    CAS  Article  Google Scholar 

  20. 20

    Mynar, J. L. et al. Two-photon degradable supramolecular assemblies of linear-dendritic copolymers. Chem. Commun. 20, 2081–2082 (2007).

    Article  Google Scholar 

  21. 21

    Parthasarathy, P. et al. Spatially controlled assembly of nanomaterials at the nanoscale. J. Nanosci. Nanotech. 9, 650–654 (2009).

    CAS  Article  Google Scholar 

  22. 22

    Wang, Y., Xu, H. & Zhang, X. Tuning the amphiphilicity of building blocks: controlled self-assembly and disassembly for functional supramolecular materials. Adv Mater. 21, 2849–2864 (2009).

    CAS  Article  Google Scholar 

  23. 23

    Muraoka, T., Koh, C., Cui, H. & Stupp, S. I. Light-triggered bioactivity in three dimensions. Angew. Chem. Int. Ed. 48, 5946–5949 (2009).

    CAS  Article  Google Scholar 

  24. 24

    Browne, W. R., Pollard, M. M., de lange, B., Meetsma, A. & Feringa, B. L. Reversible three-state switching of luminescence: a new twist to electro and photochromic behavior. J. Am. Chem. Soc. 128, 12412–12413 (2006).

    CAS  Article  Google Scholar 

  25. 25

    Coleman, A. C. et al. In situ generation of wavelength-shifting donor–acceptor mixed-monolayer-modified surfaces. Angew. Chem. Int. Ed. 49, 6580–6584 (2010).

    CAS  Article  Google Scholar 

  26. 26

    Pearlman, D. A. et al. Amber, a package of computer programs for applying molecular mechanics, normal-mode analysis, molecular-dynamics and free-energy calculations to simulate the structural and energetic properties of molecules. Comput. Phys. Commun. 91, 1–41 (1995).

    CAS  Article  Google Scholar 

  27. 27

    Tahara, Y. & Fujiyoshi, Y. A new method to measure bilayer thickness — cryoelectron microscopy of frozen-hydrated liposomes and image simulation. Micron 25, 141–149 (1994).

    CAS  Article  Google Scholar 

  28. 28

    Stuart, M. C. A. & Boekema, E. J. Two distinct mechanisms of vesicle-to-micelle and micelle-to-vesicle transition are mediated by the packing parameter of phospholipid-detergent systems. Biochim. Biophys. Acta Biomembr. 1768, 2681–2689 (2007).

    CAS  Article  Google Scholar 

  29. 29

    Brown, D. A. & London, E. Functions of lipid rafts in biological membranes. Annu. Rev. Cell Dev. Biol. 14, 111–136 (1998).

    CAS  Article  Google Scholar 

Download references


The authors thank the Zernike Institute for Advanced Materials (A.C.C. and J.T.M.) for funding and the US National Science Foundation (NSF) for an NSF International Postdoctoral Fellowship OISE-0853019 (J.M.B.). This project was supported by The Netherlands Organization for Scientific Research (NWO-CW) and the European Research Council (grant no. 227897).

Author information




B.L.F. conceived the research. B.L.F., A.C.C., J.M.B., W.R.B. and B.M. designed the experiments. Synthesis of the amphiphile was carried out by B.M., D.J.v.D. and J.C. Solution photochemical studies, switching studies and tube generation were carried out by A.C.C. and B.M. Cryo-TEM was carried out by M.C.A.S. Molecular models were generated by G.C. Confocal microscope and epifluorescence studies were carried out by J.M.B. and J.T.M. A.C.C., J.M.B., W.R.B. and B.L.F. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Ben L. Feringa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4284 kb)

Supplementary information

Supplementary movie 1 (WMV 2764 kb)

Supplementary information

Supplementary movie 2 (WMV 1020 kb)

Supplementary information

Supplementary movie 3 (WMV 2817 kb)

Supplementary information

Supplementary movie 4 (WMV 2606 kb)

Supplementary information

Supplementary movie 5 (WMV 7582 kb)

Supplementary information

Supplementary movie 6 (WMV 8176 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Coleman, A., Beierle, J., Stuart, M. et al. Light–induced disassembly of self-assembled vesicle-capped nanotubes observed in real time. Nature Nanotech 6, 547–552 (2011).

Download citation

Further reading