Abstract
Magnetoresistance is a change in the resistance of a material system caused by an applied magnetic field. Giant magnetoresistance occurs in structures containing ferromagnetic contacts separated by a metallic non-magnetic spacer, and is now the basis of read heads for hard drives and for new forms of random access memory. Using an insulator (for example, a molecular thin film) rather than a metal as the spacer gives rise to tunnelling magnetoresistance, which typically produces a larger change in resistance for a given magnetic field strength, but also yields higher resistances, which are a disadvantage for real device operation. Here, we demonstrate giant magnetoresistance across a single, non-magnetic hydrogen phthalocyanine molecule contacted by the ferromagnetic tip of a scanning tunnelling microscope. We measure the magnetoresistance to be 60% and the conductance to be 0.26G0, where G0 is the quantum of conductance. Theoretical analysis identifies spin-dependent hybridization of molecular and electrode orbitals as the cause of the large magnetoresistance.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Symmetry-driven half-integer conductance quantization in Cobalt–fulvalene sandwich nanowire
npj Computational Materials Open Access 21 October 2023
-
Nonmagnetic single-molecule spin-filter based on quantum interference
Nature Communications Open Access 05 December 2019
-
Tunable giant magnetoresistance in a single-molecule junction
Nature Communications Open Access 09 August 2019
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Wolf, S. A. et al. Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001).
Zutic, I., Fabian, J. & Sarma, S. D. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).
Baibich, M. N. et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988).
Binasch, G., Grünberg, P., Saurenbach, F. & Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828–4830 (1989).
Julliere, M. Tunneling between ferromagnetic films. Phys. Lett. 54A, 225–226 (1975).
Moodera, J., Kinder, I., Wong, T. & Meservey, R. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74, 3273–3276 (1995).
Xiong, Z., Wu, D., Vardeny, Z. & Shi, J. Giant magnetoresistance in organic spin-valves. Nature 427, 821–824 (2004).
Barraud, C. et al. Unravelling the role of the interface for spin injection into organic semiconductors. Nature Phys. 6, 615–620 (2010).
Pople, J. A. & Walmsley, S. H. Bond alternation defects in long polyene molecules. Mol. Phys. 5, 15–20 (1962).
Boukari, S. et al. Electrical transport across a structurally ordered phthalocyanine film: role of defect states. Phys. Rev. B 76, 033302 (2007).
Bowen, M. et al. Using half-metallic manganite interfaces to reveal insights into spintronics. J. Phys. Condens. Matter 19, 315208 (2007).
Greullet, F. et al. Evidence of a symmetry-dependent metallic barrier in fully epitaxial MgO based magnetic tunnel junctions. Phys. Rev. Lett. 99, 187202 (2007).
Santos, T. et al. Room temperature tunnel magnetoresistance and spin polarized tunneling studies with organic semiconductor barrier. Phys. Rev. Lett. 98, 016601 (2007).
Szulczewski, G., Tokuc, H., Oguz, K. & Coey, J. M. D. Magnetoresistance in magnetic tunnel junctions with an organic barrier and an MgO spin filter. Appl. Phys. Lett. 95, 202506 (2009).
Nagamine, Y. et al. Ultralow resistance–area product of 0.4 Ω (μm)2 and high magnetoresistance above 50% in CoFeB/MgO/CoFeB magnetic tunnel junction. Appl. Phys. Lett. 89, 162507 (2006).
Fukuzawa, H., Yuasa, H., Hashimoto, S., Iwasaki, H. & Tanaka, Y. Large magnetoresistance ratio of 10% by Fe50Co50 layers for current-confined path current-perpendicular-to-plane giant magnetoresistance spin-valve films. Appl. Phys. Lett. 87, 082507 (2005).
Elbing, M. et al. A single molecule diode. Proc. Natl Acad. Sci. USA 102, 8815–8820 (2005).
Park, J. et al. Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417, 722–725 (2002).
Osorio, E. A., Bjørnholm, T., Lehn, J.-M., Ruben, M. & van der Zant, H. S. J. Single-molecule transport in three-terminal devices. J. Phys. Condens. Matter 20, 374121 (2008).
Yu, L. H. et al. Kondo resonances and anomalous gate dependence in the electrical conductivity of single-molecule transistors. Phys. Rev. Lett. 95, 256803 (2005).
Javaid, S. et al. Impact on interface spin polarization of molecular bonding to metallic surfaces. Phys. Rev. Lett. 105, 077201 (2010).
Takács, A. F. et al. Electron transport through single phthalocyanine molecules studied using scanning tunneling microscopy. Phys. Rev. B 78, 233404 (2008).
Wende, H. et al. Substrate-induced magnetic ordering and switching of iron porphyrin molecules. Nat. Mater. 6, 516–520 (2007).
Iacovita, C. et al. Visualizing the spin of indivitual cobalt–phthalocyanine molecules. Phys. Rev. Lett. 101, 116602 (2009).
Joachim, C., Gimzewski, J. K., Schlittler, R. R. & Chavy, C. Electronic transparence of a single C60 molecule. Phys. Rev. Lett. 74, 2102–2105 (1995).
Haiss, W. et al. Precision control of single-molecule electrical junctions. Nat. Mater. 5, 995–1002 (2006).
Néel, N. et al. Controlled contact to a C60 molecule. Phys. Rev. Lett. 98, 065502 (2007).
Venkataraman, L. et al. Single-molecule circuits with well-defined molecular conductance. Nano Lett. 6, 458–462 (2006).
Li, Z. et al. Conductance of redox-active single molecular junctions: an electrochemical approach. Nanotechnology 18, 044018 (2007).
Balashov, T., Takács, A. F., Wulfhekel, W. & Kirschner, J. Magnon excitation with spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 97, 187201 (2006).
Kuch, W. et al. Magnetic dichroism study of the valence-band structure of perpendicularly magnetized Co/Cu(111). Phys. Rev. B 57, 5340–5346 (1998).
Pietzsch, O., Kubetzka, A., Bode, M. & Wiesendanger, R. Spin-polarized scanning tunneling spectroscopy of nanoscale cobalt islands on Cu(111). Phys. Rev. Lett. 92, 057202 (2004).
Tersoff, J. & Hamann, D. R. Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985).
Diekhöner, L. et al. Surface states of cobalt nanoislands on Cu(111). Phys. Rev. Lett. 90, 236801 (2003).
Lippel, P. H., Wilson, R. J., Miller, M. D., Wöll, C. & Chiang, S. High-resolution imaging of copper–phthalocyanine by scanning-tunneling microscopy. Phys. Rev. Lett. 62, 171–174 (1989).
Atodiresei, N. et al. Design of the local spin polarization at the organic-ferromagnetic interface. Phys. Rev. Lett. 105, 066601 (2010).
Moresco, F. Manipulation of large molecules by low-temperature STM: model systems for molecular electronics. Phys. Rep. 399, 175–225 (2004).
Temirov, R., Lassise, A., Anders, F. B. & Tautz, F. S. Kondo effect by controlled cleavage of a single-molecule contact. Nanotechnology 19, 065401 (2008).
Joachim, C., Gimzewski, J. K., Schlittler, R. R. & Chavy, C. Electronic transparence of a single C60 molecule. Phys. Rev. Lett. 74, 2102–2105 (1995).
Oka, H. et al. Spin-dependent quantum interference within a single magnetic nanostructure. Science 327, 843–846 (2010).
Arnold, A., Weigend, F. & Evers, F. Quantum chemistry calculations for molecules coupled to reservoirs: formalism, implementation and application to benzene–dithiol. J. Chem. Phys. 126, 174101 (2007).
Heinrich, B. W. et al. Direct observation of the tunnelling channels of a chemisorbed molecule. Phys. Chem. Lett. 1, 1517–1523 (2010).
Rosa, A. & Baerends, E. J. Origin and relevance of the staggering in one-dimensional molecular metals. A density functional study of metallophthalocyanine model dimers. Inorg. Chem. 31, 4717–4726 (1992).
Rosa, A., Ricciardi, G., Baerends, E. J. & van Gisbergen S. J. A. The optical spectra of NiP, NiPz, NiTBP, and NiPc: electronic effects of meso-tetraaza substitution and tetrabenzo annulation. J. Phys. Chem. A 105, 3311–3327 (2001).
Brede, J. et al. Spin- and energy-dependent tunneling through a single molecule with intramolecular spatial resolution. Phys. Rev. Lett. 105, 047204 (2010).
Breit, G. & Wigner, E. Capture of slow neutrons. Phys. Rev. B 49, 519–531 (1936).
Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comp. Chem. 27, 1787–1799 (2006).
Acknowledgements
The authors thank O. Hampe, J. Kortus, K. Fink, S. Boukari, Xi Chen, M. Alouani, R. Mattana, J. van Ruitenbeek and P. Seneor for useful communications. The authors also acknowledge support from the Deutsche Forschungsgemeinschaft (WU 349/3-1 and SPP1243), the Center for Functional Nanostructures, the French–German University, the Alexander von Humboldt foundation, and the Agence Nationale de la Recherche (ANR-06-NANO-033-01) as well as from the Yamada Science Foundation and the Asahi Glass Foundation.
Author information
Authors and Affiliations
Contributions
S.S. and W.W. conceived and designed the experiments. S.S., Y.N., T.K.Y. and An.B. performed the experiments. S.S., Y.N. and An.B. analysed the data. Al.B. and F.E. designed and performed the calculations. M.B. and E.B. provided purified molecules. S.S., Al.B., T.K.Y., F.E., M.B., E.B. and W.W. co-wrote the paper. All authors discussed the results and commented on the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 497 kb)
Rights and permissions
About this article
Cite this article
Schmaus, S., Bagrets, A., Nahas, Y. et al. Giant magnetoresistance through a single molecule. Nature Nanotech 6, 185–189 (2011). https://doi.org/10.1038/nnano.2011.11
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nnano.2011.11
This article is cited by
-
Symmetry-driven half-integer conductance quantization in Cobalt–fulvalene sandwich nanowire
npj Computational Materials (2023)
-
Sub-nanometre resolution in single-molecule photoluminescence imaging
Nature Photonics (2020)
-
Protonation control of spin transport properties in magnetic single-molecule junctions
Journal of Materials Science (2020)
-
Nonmagnetic single-molecule spin-filter based on quantum interference
Nature Communications (2019)
-
Tunable giant magnetoresistance in a single-molecule junction
Nature Communications (2019)