Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Graphene transistors

Abstract

Graphene has changed from being the exclusive domain of condensed-matter physicists to being explored by those in the electron-device community. In particular, graphene-based transistors have developed rapidly and are now considered an option for post-silicon electronics. However, many details about the potential performance of graphene transistors in real applications remain unclear. Here I review the properties of graphene that are relevant to electron devices, discuss the trade-offs among these properties and examine their effects on the performance of graphene transistors in both logic and radiofrequency applications. I conclude that the excellent mobility of graphene may not, as is often assumed, be its most compelling feature from a device perspective. Rather, it may be the possibility of making devices with channels that are extremely thin that will allow graphene field-effect transistors to be scaled to shorter channel lengths and higher speeds without encountering the adverse short-channel effects that restrict the performance of existing devices. Outstanding challenges for graphene transistors include opening a sizeable and well-defined bandgap in graphene, making large-area graphene transistors that operate in the current-saturation regime and fabricating graphene nanoribbons with well-defined widths and clean edges.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Trends in digital electronics.
Figure 2: Conventional FETs.
Figure 3: FET d.c. and small-signal operation.
Figure 4: Properties of graphene and graphene nanoribbons.
Figure 5: Carrier transport in graphene.
Figure 6: Structure and evolution of graphene MOSFETs.
Figure 7: Direct-current behaviour of graphene MOSFETs with a large-area-graphene channel.
Figure 8: Comparing cut-off frequencies for different FETs.

References

  1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  2. The International Technology Roadmap for Semiconductors http://www.itrs.net/Links/2009ITRS/Home2009.htm (Semiconductor Industry Association, 2009).

  3. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    Article  CAS  Google Scholar 

  4. Geim, A. K. Graphene: status & prospects. Science 324, 1530–1534 (2009).

    Article  CAS  Google Scholar 

  5. Castro Neto, A. H. et al. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  CAS  Google Scholar 

  6. Moore, G. E. in Tech. Dig. ISSCC 20–23 (IEEE, 2003).

    Google Scholar 

  7. Schwierz, F., Wong, H. & Liou, J. J. Nanometer CMOS (Pan Stanford, 2010).

    Google Scholar 

  8. Schwierz, F. & Liou, J. J. Modern Microwave Transistors – Theory, Design, and Performance (Wiley, 2003).

    Google Scholar 

  9. Schwierz, F. & Liou, J. J. RF transistors: recent developments and roadmap toward terahertz applications. Solid-State Electron. 51, 1079–1091 (2007).

    Article  CAS  Google Scholar 

  10. Taur, Y. & Ning, T. H. Fundamentals of Modern VLSI Devices(Cambridge Univ. Press, 1998).

    Google Scholar 

  11. Frank, D. J., Taur, Y. & Wong, H-S. P. Generalized scale length for two-dimensional effects in MOSFETs. IEEE Electron Dev. Lett. 19, 385–387 (1998).

    Article  CAS  Google Scholar 

  12. Aberg, I. & Hoyt, J. L. Hole transport in ultra-thin-body MOSFETs in strained-Si directly on insulator with strained-Si thickness less than 5 nm. IEEE Electron Dev. Lett. 26, 661–663 (2005).

    Article  CAS  Google Scholar 

  13. Thompson, S. E. et al. In search of “forever”, continued transistor scaling one new material at a time. IEEE Trans. Semicond. Manuf. 18, 26–36 (2005).

    Article  Google Scholar 

  14. Uyemura, J. P. CMOS Logic Circuit Design (Kluwer Academic, 1999).

    Google Scholar 

  15. Hughes, B. & Tasker, P. J. Bias dependence of the MODFET intrinsic model elements values at microwave frequencies. IEEE Trans. Electron. Dev. 36, 2267–2273 (1989).

    Article  Google Scholar 

  16. Nguyen, L. D. et al. in Tech. Dig. IEDM 176–179 (IEEE, 1988).

    Google Scholar 

  17. Boehm, H. P., Clauss, A., Hofmann, U. & Fischer, G. O. Dünnste Kohlenstoff-Folien. Z. Naturforsch. B 17, 150–153 (1962).

    Article  Google Scholar 

  18. May, J. W. Platinum surface LEED rings. Surf. Sci. 17, 267–270 (1969).

    Article  CAS  Google Scholar 

  19. van Bommel, A. J., Crombeen, J. E. & van Tooren, A. LEED and Auger electron observations of the SiC (0001) surface. Surf. Sci. 48, 463–472 (1975).

    Article  Google Scholar 

  20. Kim, K-S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009).

    Article  CAS  Google Scholar 

  21. Reina, A. et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2009).

    Article  CAS  Google Scholar 

  22. Berger, C. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006).

    Article  CAS  Google Scholar 

  23. Kedzierski, J. et al. Epitaxial graphene transistors on SiC substrates. IEEE Trans. Electron. Dev. 55, 2078–2085 (2008).

    Article  CAS  Google Scholar 

  24. Han, M. et al. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).

    Article  CAS  Google Scholar 

  25. Kim, P. et al. in Tech. Dig. IEDM 241–244 (IEEE, 2009).

    Google Scholar 

  26. Li, X., Wang, X., Zhang, L., Lee, S. & Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008).

    Article  CAS  Google Scholar 

  27. Chen, Z., Lin, Y-M., Rooks, M. J. & Avouris, Ph. Graphene nano-ribbon electronics. Physica E 40, 228–232 (2007).

    Article  CAS  Google Scholar 

  28. Yang, L. et al. Quasiparticle energies and band gaps in graphene nanoribbons. Phys. Rev. Lett. 99, 186801 (2007).

    Article  CAS  Google Scholar 

  29. Evaldsson, M., Zozoulenko, I. V., Xu, H. & Heinzel, T. Edge-disorder-induced Anderson localization and conduction gap in graphene nanoribbons. Phys. Rev. B 78, 161407 (2008).

    Article  CAS  Google Scholar 

  30. Castro, E. V. et al. Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 99, 216802 (2007).

    Article  CAS  Google Scholar 

  31. Gava, P., Lazzeri, M., Saitta, A. M. & Mauri, F. Ab initio study of gap opening and screening effects in gated bilayer graphene. Phys. Rev. B 79, 165431 (2009).

    Article  CAS  Google Scholar 

  32. Ohta, T., Bostwick, A., Seyller, Th., Horn, K. & Rotenberg, E. Controlling the electronic structure of bilayer graphene. Science 313, 951–954 (2006).

    Article  CAS  Google Scholar 

  33. Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).

    Article  CAS  Google Scholar 

  34. Rotenberg, E. et al. and Zhou, S. Y. et al. Origin of the energy bandgap in epitaxial graphene. Nature Mater. 7, 258–260 (2008).

    Article  CAS  Google Scholar 

  35. Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nature Mater. 6, 770–775 (2007).

    Article  CAS  Google Scholar 

  36. Kim, S., Ihm, J., Choi, H. J. & Son, Y-W. Origin of anomalous electronic structures of epitaxial graphene on silicon carbide. Phys. Rev. Lett. 100, 176802 (2008).

    Article  CAS  Google Scholar 

  37. Bostwick, A., Ohta, T., Seyller, Th., Horn, K. & Rotenberg, E. Quasiparticle dynamics in graphene. Nature Phys. 3, 36–40 (2007).

    Article  CAS  Google Scholar 

  38. Peng, X. & Ahuja, R. Symmetry breaking induced bandgap in epitaxial graphene layers on Si. Nano Lett. 8, 4464–4468 (2008).

    Article  CAS  Google Scholar 

  39. Sano, E. & Otsuji, T. Theoretical evaluation of channel structure in graphene field-effect transistors. Jpn. J. Appl. Phys. 48, 041202 (2009).

    Article  CAS  Google Scholar 

  40. Pereira, V. M., Castro Neto, A. H. & Peres, N. M. R. Tight-binding approach to uniaxial strain in graphene. Phys. Rev. B 80, 045401 (2009).

    Article  CAS  Google Scholar 

  41. Ni, Z. H. et al. Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2, 2301–2305 (2008); erratum 3, 483 (2009).

    Article  CAS  Google Scholar 

  42. Sols, F., Guinea, F. & Castro Neto, A. H. Coulomb blockade in graphene nanoribbons. Phys. Rev. Lett. 99, 166803 (2007).

    Article  CAS  Google Scholar 

  43. Han, M. Y., Brant, J. C. & Kim, P. Electron transport in disordered graphene nanoribbons. Phys. Rev. Lett. 104, 056801 (2010).

    Article  CAS  Google Scholar 

  44. Cervantes-Sodi, F., Csanyi, G., Picanec, S. & Ferrari, A. C. Edge-functionalized and substitutionally doped graphene nanoribbons: electronic and spin properties. Phys. Rev. B 77, 165427 (2008).

    Article  CAS  Google Scholar 

  45. Jiao, J., Wang, X., Diankov, G., Wang, H. & Dai, H. Facile synthesis of high-quality graphene nanoribbons. Nature Nanotech. 5, 321–325 (2010).

    Article  CAS  Google Scholar 

  46. Raza, H. & Kan, E. C. Armchair graphene nanoribbons: electronic structure and electric-field modulation. Phys. Rev. B 77, 245434 (2008).

    Article  CAS  Google Scholar 

  47. Chen, J-H., Jang, C., Xiao, S., Ishigami, M. & Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2 . Nature Nanotech. 3, 206–209 (2008).

    Article  CAS  Google Scholar 

  48. Chen, F., Xia, J., Ferry, D. K. & Tao, N. Dielectric screening enhanced performance in graphene FET. Nano Lett. 9, 2571–2574 (2009).

    Article  CAS  Google Scholar 

  49. Morozov, V. S. et al. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 100, 016602 (2008).

    Article  CAS  Google Scholar 

  50. Geim, A. Graphene update. Bull. Am. Phys. Soc. 55, abstr. J21.0004, http://meetings.aps.org/link/BAPS.2010.MAR.J21.4 (2010).

  51. Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Mater. 8, 203–207 (2009).

    Article  CAS  Google Scholar 

  52. Lemme, M. C., Echtermeyer, T. J., Baus, M. & Kurz, H. A graphene field-effect device. IEEE Electron Dev. Lett. 28, 282–284 (2007).

    Article  CAS  Google Scholar 

  53. Lin, Y-M. et al. Operation of graphene transistors at gigahertz frequencies. Nano Lett. 9, 422–426 (2009).

    Article  CAS  Google Scholar 

  54. Liao, L. et al. High-κ oxide nanoribbons as gate dielectrics for high mobility top-gated graphene transistors. Proc. Natl Acad. Sci. USA 107, 6711–6715 (2010).

    Article  CAS  Google Scholar 

  55. Farmer, D. B. et al. Utilization of a buffered dielectric to achieve high field-effect carrier mobility in graphene transistors. Nano Lett. 9, 4474–4478 (2009).

    Article  CAS  Google Scholar 

  56. Zhou, X., Park, J-Y., Huang, S., Liu, J. & McEuen, P. L. Band structure, phonon scattering, and performance limit of single-walled carbon nanotube transistors. Phys. Rev. Lett. 95, 146805 (2005).

    Article  CAS  Google Scholar 

  57. Perebeinos, V., Tersoff, J. & Avouris, Ph. Electron-phonon interaction and transport in semiconducting carbon nanotubes. Phys. Rev. Lett. 94, 0786802 (2005).

    Google Scholar 

  58. Obradovic, B. et al. Analysis of graphene nanoribbons as a channel material for field-effect transistors. Appl. Phys. Lett. 88, 142102 (2006).

    Article  CAS  Google Scholar 

  59. Fang, T., Konar, A., Xing, H. & Jena, D. Mobility in semiconducting nanoribbons: phonon, impurity, and edge roughness scattering. Phys. Rev. B 78, 205403 (2008).

    Article  CAS  Google Scholar 

  60. Bresciani, M., Palestri, P., Esseni, D. & Selmi, L. in Proc. ESSDERC '09 480–483 (IEEE, 2009).

    Google Scholar 

  61. Betti, A., Fiori, G., Iannaccone, G. & Mao, Y. in Tech. Dig. IEDM 2009 897–900 (IEEE, 2009).

    Google Scholar 

  62. Wang, X. et al. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 100, 206803 (2008).

    Article  CAS  Google Scholar 

  63. Akturk, A. & Goldsman, N. Electron transport and full-band electron-phonon interactions in graphene. J. Appl. Phys. 103, 053702 (2008).

    Article  CAS  Google Scholar 

  64. Shishir, R. S. & Ferry, D. K. Velocity saturation in intrinsic graphene. J. Phys. Condens. Matter 21, 344201 (2009).

    Article  CAS  Google Scholar 

  65. Barreiro, A., Lazzeri, M., Moser, J., Mauri, F. & Bachtold, A. Transport properties of graphene in the high-current limit. Phys. Rev. Lett. 103, 076601 (2009).

    Article  CAS  Google Scholar 

  66. Schroder, D. K. Semiconductor Material and Device Characterization (Wiley, 1990).

    Google Scholar 

  67. Fang, T., Konar, A., Xing, H. & Jena, D. Carrier statistics and quantum capacitance of graphene sheets and nanoribbons. Appl. Phys. Lett. 91, 092109 (2007).

    Article  CAS  Google Scholar 

  68. Chen, Z. & Appenzeller, J. in Tech. Dig. IEDM 2008, paper 21.1 (IEEE, 2008).

    Google Scholar 

  69. Meric, I., Baklitskaya, N., Kim, P. & Shepard, K. L. in Tech. Dig. IEDM 2008, paper 21.2 (IEEE, 2008).

    Google Scholar 

  70. Meric, I. et al. Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nature Nanotech. 3, 654–659 (2008).

    Article  CAS  Google Scholar 

  71. Kedzierski, J. et al. Graphene-on-insulator transistors made using C on Ni chemical-vapor deposition. IEEE Electron Dev. Lett. 30, 745–747 (2009).

    Article  CAS  Google Scholar 

  72. Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

    Article  CAS  Google Scholar 

  73. Lin, Y-M. et al. 100-GHz transistors from wafer-scale epitaxial graphene. Science 327, 662 (2010).

    Article  CAS  Google Scholar 

  74. Moon, J. S. et al. Epitaxial-graphene RF field-effect transistors on Si-face 6H-SiC substrates. IEEE Electron Dev. Lett. 30, 650–652 (2009).

    Article  CAS  Google Scholar 

  75. Tahy, K. et al. in Proc. Dev. Res. Conf. 2009 207–208 (IEEE, 2009).

    Book  Google Scholar 

  76. Thiele, S., Schaefer, J. A. & Schwierz, F. Modeling of graphene metal–oxide–semiconductor field-effect transistors with gapless large-area graphene channels. J. Appl. Phys. 107, 094505 (2010).

    Article  CAS  Google Scholar 

  77. Lin, Y-M. et al. Dual-gate graphene FETs with fT of 50 GHz. IEEE Electron Dev. Lett. 31, 68–70 (2010).

    Article  CAS  Google Scholar 

  78. Nougaret, N. et al. 80 GHz field-effect transistors produced using high purity semiconducting single-walled carbon nanotubes. Appl. Phys. Lett. 94, 243505 (2009).

    Article  CAS  Google Scholar 

  79. Rutherglen, C., Jain, D. & Burke, P. Nanotube electronics for radiofrequency applications. Nature Nanotech. 4, 811–819 (2009).

    Article  CAS  Google Scholar 

  80. Yoon, Y. & Guo, J. Effects of edge roughness in graphene nanoribbon transistors. Appl. Phys. Lett. 91, 073103 (2007).

    Article  CAS  Google Scholar 

  81. Basu, D., Gilbert, M. J., Register, L. F., Banerjee, S. K. & MacDonald, A. H. Effect of edge roughness on electronic transport in graphene nanoribbon channel metal–oxide–semiconductor field-effect transistors. Appl. Phys. Lett. 92, 042114 (2008).

    Article  CAS  Google Scholar 

  82. Liao, L. et al. Top-gated graphene nanoribbon transistors with ultrathin high-k dielectrics. Nano Lett. 10, 1917–1921 (2010).

    Article  CAS  Google Scholar 

  83. Xia, F., Farmer, D. B., Lin, Y-M. & Avouris, Ph. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett. 10, 715–718 (2010).

    Article  CAS  Google Scholar 

  84. Iannaccone, G. et al. in Tech. Dig. IEDM 2009 245–248 (IEEE, 2009).

    Google Scholar 

  85. Nagashio, K., Nishimura, T., Kita, K. & Toriumi, A. in Tech. Dig. IEDM 2009 565–568 (IEEE, 2009).

    Google Scholar 

  86. Russo, S., Cracuin, M. F., Yamamoto, Y., Morpurgo, A. F. & Tarucha, S. Contact resistance in graphene-based devices. Physica E 42, 677–679 (2010).

    Article  CAS  Google Scholar 

  87. Huard, B., Stander, N., Sulpizio, J. A. & Goldhaber-Gordon, D. Evidence of the role of contacts on the observed electron-hole asymmetry in graphene. Phys. Rev. B 78, 121402 (2008).

    Article  CAS  Google Scholar 

  88. Boucart, K. & Ionescu, A. M. Double-gate tunnel FET with high-κ gate dielectric. IEEE Trans. Electron. Dev. 54, 1725–1733 (2007).

    Article  CAS  Google Scholar 

  89. Appenzeller, J., Lin, Y-M., Knoch, J. & Avouris, Ph. Band-to-band tunneling in carbon nanotube field-effect transistor. Phys. Rev. Lett. 93, 196805 (2004).

    Article  CAS  Google Scholar 

  90. Luisier, M. & Klimeck, G. in Proc. Dev. Res. Conf. 2009 201–202 (IEEE, 2009).

    Book  Google Scholar 

  91. Fiori, G. & Iannaccone, G. Ultralow-voltage bilayer graphene tunnel FET. IEEE Electron Dev. Lett. 30, 1096–1098 (2009).

    Article  CAS  Google Scholar 

  92. Banerjee, S. K., Register, L. F., Tutuc, E., Reddy, D. & MacDonald, A. H. Bilayer pseudospin field-effect transistor (BiSFET): a proposed new logic device. IEEE Electron Dev. Lett. 30, 158–160 (2009).

    Article  Google Scholar 

  93. Murali, R., Brenner, K., Yang, Y., Beck, Th. & Meindl, J. D. Resistivity of graphene nanoribbon interconnects. IEEE Electron Dev. Lett. 30, 611–613 (2009).

    Article  Google Scholar 

  94. Awano, Y. in Tech. Dig. IEDM 2009 233–236 (IEEE, 2009).

    Google Scholar 

  95. Moser, J., Barreiro, A. & Bachtold, A. Current-induced cleaning of graphene. Appl. Phys. Lett. 91, 163513 (2007).

    Article  CAS  Google Scholar 

  96. Balandin, A. A. et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008).

    Article  CAS  Google Scholar 

  97. Ferry, D. K., Gilbert, M. J. & Akis, R. Some considerations on nanowires in nanoelectronics. IEEE Trans. Electron. Dev. 55, 2820–2826 (2008).

    Article  CAS  Google Scholar 

  98. Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).

    Article  CAS  Google Scholar 

  99. Tans, S. J., Verschueren, A. R. M. & Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 393, 49–52 (1998).

    Article  CAS  Google Scholar 

  100. Li, S., Yu, Z., Yen, S-F., Tang, W. C. & Burke, P. J. Carbon nanotube transistor operation at 2.6 GHz. Nano Lett. 4, 753–756 (2004).

    Article  CAS  Google Scholar 

  101. Lee, S. et al. in Tech. Dig. IEDM 2007 255–258 (IEEE, 2007).

    Google Scholar 

  102. Nguyen, L. D., Tasker, P. J., Radulescu, D. C. & Eastman, L. F. Characterization of ultra-high-speed AlGaAs/InGaAs (on GaAs) MODFETs. IEEE Trans. Electron. Dev. 36, 2243–2248 (1989).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the 2008–2009 Excellence Research Grant of Technische Universität Ilmenau. The author thanks A. Castro Neto, K. Novoselov and Th. Seyller for discussions. He also thanks St. Thiele for his comments and for graphene MOSFET simulations, and M. Schlechtweg for providing GaAs metamorphic-HEMT data before publication.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schwierz, F. Graphene transistors. Nature Nanotech 5, 487–496 (2010). https://doi.org/10.1038/nnano.2010.89

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.89

This article is cited by

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research