Abstract
Graphene has changed from being the exclusive domain of condensed-matter physicists to being explored by those in the electron-device community. In particular, graphene-based transistors have developed rapidly and are now considered an option for post-silicon electronics. However, many details about the potential performance of graphene transistors in real applications remain unclear. Here I review the properties of graphene that are relevant to electron devices, discuss the trade-offs among these properties and examine their effects on the performance of graphene transistors in both logic and radiofrequency applications. I conclude that the excellent mobility of graphene may not, as is often assumed, be its most compelling feature from a device perspective. Rather, it may be the possibility of making devices with channels that are extremely thin that will allow graphene field-effect transistors to be scaled to shorter channel lengths and higher speeds without encountering the adverse short-channel effects that restrict the performance of existing devices. Outstanding challenges for graphene transistors include opening a sizeable and well-defined bandgap in graphene, making large-area graphene transistors that operate in the current-saturation regime and fabricating graphene nanoribbons with well-defined widths and clean edges.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).
The International Technology Roadmap for Semiconductors http://www.itrs.net/Links/2009ITRS/Home2009.htm (Semiconductor Industry Association, 2009).
Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).
Geim, A. K. Graphene: status & prospects. Science 324, 1530–1534 (2009).
Castro Neto, A. H. et al. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).
Moore, G. E. in Tech. Dig. ISSCC 20–23 (IEEE, 2003).
Schwierz, F., Wong, H. & Liou, J. J. Nanometer CMOS (Pan Stanford, 2010).
Schwierz, F. & Liou, J. J. Modern Microwave Transistors – Theory, Design, and Performance (Wiley, 2003).
Schwierz, F. & Liou, J. J. RF transistors: recent developments and roadmap toward terahertz applications. Solid-State Electron. 51, 1079–1091 (2007).
Taur, Y. & Ning, T. H. Fundamentals of Modern VLSI Devices(Cambridge Univ. Press, 1998).
Frank, D. J., Taur, Y. & Wong, H-S. P. Generalized scale length for two-dimensional effects in MOSFETs. IEEE Electron Dev. Lett. 19, 385–387 (1998).
Aberg, I. & Hoyt, J. L. Hole transport in ultra-thin-body MOSFETs in strained-Si directly on insulator with strained-Si thickness less than 5 nm. IEEE Electron Dev. Lett. 26, 661–663 (2005).
Thompson, S. E. et al. In search of “forever”, continued transistor scaling one new material at a time. IEEE Trans. Semicond. Manuf. 18, 26–36 (2005).
Uyemura, J. P. CMOS Logic Circuit Design (Kluwer Academic, 1999).
Hughes, B. & Tasker, P. J. Bias dependence of the MODFET intrinsic model elements values at microwave frequencies. IEEE Trans. Electron. Dev. 36, 2267–2273 (1989).
Nguyen, L. D. et al. in Tech. Dig. IEDM 176–179 (IEEE, 1988).
Boehm, H. P., Clauss, A., Hofmann, U. & Fischer, G. O. Dünnste Kohlenstoff-Folien. Z. Naturforsch. B 17, 150–153 (1962).
May, J. W. Platinum surface LEED rings. Surf. Sci. 17, 267–270 (1969).
van Bommel, A. J., Crombeen, J. E. & van Tooren, A. LEED and Auger electron observations of the SiC (0001) surface. Surf. Sci. 48, 463–472 (1975).
Kim, K-S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009).
Reina, A. et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2009).
Berger, C. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006).
Kedzierski, J. et al. Epitaxial graphene transistors on SiC substrates. IEEE Trans. Electron. Dev. 55, 2078–2085 (2008).
Han, M. et al. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).
Kim, P. et al. in Tech. Dig. IEDM 241–244 (IEEE, 2009).
Li, X., Wang, X., Zhang, L., Lee, S. & Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008).
Chen, Z., Lin, Y-M., Rooks, M. J. & Avouris, Ph. Graphene nano-ribbon electronics. Physica E 40, 228–232 (2007).
Yang, L. et al. Quasiparticle energies and band gaps in graphene nanoribbons. Phys. Rev. Lett. 99, 186801 (2007).
Evaldsson, M., Zozoulenko, I. V., Xu, H. & Heinzel, T. Edge-disorder-induced Anderson localization and conduction gap in graphene nanoribbons. Phys. Rev. B 78, 161407 (2008).
Castro, E. V. et al. Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 99, 216802 (2007).
Gava, P., Lazzeri, M., Saitta, A. M. & Mauri, F. Ab initio study of gap opening and screening effects in gated bilayer graphene. Phys. Rev. B 79, 165431 (2009).
Ohta, T., Bostwick, A., Seyller, Th., Horn, K. & Rotenberg, E. Controlling the electronic structure of bilayer graphene. Science 313, 951–954 (2006).
Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).
Rotenberg, E. et al. and Zhou, S. Y. et al. Origin of the energy bandgap in epitaxial graphene. Nature Mater. 7, 258–260 (2008).
Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nature Mater. 6, 770–775 (2007).
Kim, S., Ihm, J., Choi, H. J. & Son, Y-W. Origin of anomalous electronic structures of epitaxial graphene on silicon carbide. Phys. Rev. Lett. 100, 176802 (2008).
Bostwick, A., Ohta, T., Seyller, Th., Horn, K. & Rotenberg, E. Quasiparticle dynamics in graphene. Nature Phys. 3, 36–40 (2007).
Peng, X. & Ahuja, R. Symmetry breaking induced bandgap in epitaxial graphene layers on Si. Nano Lett. 8, 4464–4468 (2008).
Sano, E. & Otsuji, T. Theoretical evaluation of channel structure in graphene field-effect transistors. Jpn. J. Appl. Phys. 48, 041202 (2009).
Pereira, V. M., Castro Neto, A. H. & Peres, N. M. R. Tight-binding approach to uniaxial strain in graphene. Phys. Rev. B 80, 045401 (2009).
Ni, Z. H. et al. Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2, 2301–2305 (2008); erratum 3, 483 (2009).
Sols, F., Guinea, F. & Castro Neto, A. H. Coulomb blockade in graphene nanoribbons. Phys. Rev. Lett. 99, 166803 (2007).
Han, M. Y., Brant, J. C. & Kim, P. Electron transport in disordered graphene nanoribbons. Phys. Rev. Lett. 104, 056801 (2010).
Cervantes-Sodi, F., Csanyi, G., Picanec, S. & Ferrari, A. C. Edge-functionalized and substitutionally doped graphene nanoribbons: electronic and spin properties. Phys. Rev. B 77, 165427 (2008).
Jiao, J., Wang, X., Diankov, G., Wang, H. & Dai, H. Facile synthesis of high-quality graphene nanoribbons. Nature Nanotech. 5, 321–325 (2010).
Raza, H. & Kan, E. C. Armchair graphene nanoribbons: electronic structure and electric-field modulation. Phys. Rev. B 77, 245434 (2008).
Chen, J-H., Jang, C., Xiao, S., Ishigami, M. & Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2 . Nature Nanotech. 3, 206–209 (2008).
Chen, F., Xia, J., Ferry, D. K. & Tao, N. Dielectric screening enhanced performance in graphene FET. Nano Lett. 9, 2571–2574 (2009).
Morozov, V. S. et al. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 100, 016602 (2008).
Geim, A. Graphene update. Bull. Am. Phys. Soc. 55, abstr. J21.0004, http://meetings.aps.org/link/BAPS.2010.MAR.J21.4 (2010).
Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Mater. 8, 203–207 (2009).
Lemme, M. C., Echtermeyer, T. J., Baus, M. & Kurz, H. A graphene field-effect device. IEEE Electron Dev. Lett. 28, 282–284 (2007).
Lin, Y-M. et al. Operation of graphene transistors at gigahertz frequencies. Nano Lett. 9, 422–426 (2009).
Liao, L. et al. High-κ oxide nanoribbons as gate dielectrics for high mobility top-gated graphene transistors. Proc. Natl Acad. Sci. USA 107, 6711–6715 (2010).
Farmer, D. B. et al. Utilization of a buffered dielectric to achieve high field-effect carrier mobility in graphene transistors. Nano Lett. 9, 4474–4478 (2009).
Zhou, X., Park, J-Y., Huang, S., Liu, J. & McEuen, P. L. Band structure, phonon scattering, and performance limit of single-walled carbon nanotube transistors. Phys. Rev. Lett. 95, 146805 (2005).
Perebeinos, V., Tersoff, J. & Avouris, Ph. Electron-phonon interaction and transport in semiconducting carbon nanotubes. Phys. Rev. Lett. 94, 0786802 (2005).
Obradovic, B. et al. Analysis of graphene nanoribbons as a channel material for field-effect transistors. Appl. Phys. Lett. 88, 142102 (2006).
Fang, T., Konar, A., Xing, H. & Jena, D. Mobility in semiconducting nanoribbons: phonon, impurity, and edge roughness scattering. Phys. Rev. B 78, 205403 (2008).
Bresciani, M., Palestri, P., Esseni, D. & Selmi, L. in Proc. ESSDERC '09 480–483 (IEEE, 2009).
Betti, A., Fiori, G., Iannaccone, G. & Mao, Y. in Tech. Dig. IEDM 2009 897–900 (IEEE, 2009).
Wang, X. et al. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 100, 206803 (2008).
Akturk, A. & Goldsman, N. Electron transport and full-band electron-phonon interactions in graphene. J. Appl. Phys. 103, 053702 (2008).
Shishir, R. S. & Ferry, D. K. Velocity saturation in intrinsic graphene. J. Phys. Condens. Matter 21, 344201 (2009).
Barreiro, A., Lazzeri, M., Moser, J., Mauri, F. & Bachtold, A. Transport properties of graphene in the high-current limit. Phys. Rev. Lett. 103, 076601 (2009).
Schroder, D. K. Semiconductor Material and Device Characterization (Wiley, 1990).
Fang, T., Konar, A., Xing, H. & Jena, D. Carrier statistics and quantum capacitance of graphene sheets and nanoribbons. Appl. Phys. Lett. 91, 092109 (2007).
Chen, Z. & Appenzeller, J. in Tech. Dig. IEDM 2008, paper 21.1 (IEEE, 2008).
Meric, I., Baklitskaya, N., Kim, P. & Shepard, K. L. in Tech. Dig. IEDM 2008, paper 21.2 (IEEE, 2008).
Meric, I. et al. Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nature Nanotech. 3, 654–659 (2008).
Kedzierski, J. et al. Graphene-on-insulator transistors made using C on Ni chemical-vapor deposition. IEEE Electron Dev. Lett. 30, 745–747 (2009).
Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).
Lin, Y-M. et al. 100-GHz transistors from wafer-scale epitaxial graphene. Science 327, 662 (2010).
Moon, J. S. et al. Epitaxial-graphene RF field-effect transistors on Si-face 6H-SiC substrates. IEEE Electron Dev. Lett. 30, 650–652 (2009).
Tahy, K. et al. in Proc. Dev. Res. Conf. 2009 207–208 (IEEE, 2009).
Thiele, S., Schaefer, J. A. & Schwierz, F. Modeling of graphene metal–oxide–semiconductor field-effect transistors with gapless large-area graphene channels. J. Appl. Phys. 107, 094505 (2010).
Lin, Y-M. et al. Dual-gate graphene FETs with fT of 50 GHz. IEEE Electron Dev. Lett. 31, 68–70 (2010).
Nougaret, N. et al. 80 GHz field-effect transistors produced using high purity semiconducting single-walled carbon nanotubes. Appl. Phys. Lett. 94, 243505 (2009).
Rutherglen, C., Jain, D. & Burke, P. Nanotube electronics for radiofrequency applications. Nature Nanotech. 4, 811–819 (2009).
Yoon, Y. & Guo, J. Effects of edge roughness in graphene nanoribbon transistors. Appl. Phys. Lett. 91, 073103 (2007).
Basu, D., Gilbert, M. J., Register, L. F., Banerjee, S. K. & MacDonald, A. H. Effect of edge roughness on electronic transport in graphene nanoribbon channel metal–oxide–semiconductor field-effect transistors. Appl. Phys. Lett. 92, 042114 (2008).
Liao, L. et al. Top-gated graphene nanoribbon transistors with ultrathin high-k dielectrics. Nano Lett. 10, 1917–1921 (2010).
Xia, F., Farmer, D. B., Lin, Y-M. & Avouris, Ph. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett. 10, 715–718 (2010).
Iannaccone, G. et al. in Tech. Dig. IEDM 2009 245–248 (IEEE, 2009).
Nagashio, K., Nishimura, T., Kita, K. & Toriumi, A. in Tech. Dig. IEDM 2009 565–568 (IEEE, 2009).
Russo, S., Cracuin, M. F., Yamamoto, Y., Morpurgo, A. F. & Tarucha, S. Contact resistance in graphene-based devices. Physica E 42, 677–679 (2010).
Huard, B., Stander, N., Sulpizio, J. A. & Goldhaber-Gordon, D. Evidence of the role of contacts on the observed electron-hole asymmetry in graphene. Phys. Rev. B 78, 121402 (2008).
Boucart, K. & Ionescu, A. M. Double-gate tunnel FET with high-κ gate dielectric. IEEE Trans. Electron. Dev. 54, 1725–1733 (2007).
Appenzeller, J., Lin, Y-M., Knoch, J. & Avouris, Ph. Band-to-band tunneling in carbon nanotube field-effect transistor. Phys. Rev. Lett. 93, 196805 (2004).
Luisier, M. & Klimeck, G. in Proc. Dev. Res. Conf. 2009 201–202 (IEEE, 2009).
Fiori, G. & Iannaccone, G. Ultralow-voltage bilayer graphene tunnel FET. IEEE Electron Dev. Lett. 30, 1096–1098 (2009).
Banerjee, S. K., Register, L. F., Tutuc, E., Reddy, D. & MacDonald, A. H. Bilayer pseudospin field-effect transistor (BiSFET): a proposed new logic device. IEEE Electron Dev. Lett. 30, 158–160 (2009).
Murali, R., Brenner, K., Yang, Y., Beck, Th. & Meindl, J. D. Resistivity of graphene nanoribbon interconnects. IEEE Electron Dev. Lett. 30, 611–613 (2009).
Awano, Y. in Tech. Dig. IEDM 2009 233–236 (IEEE, 2009).
Moser, J., Barreiro, A. & Bachtold, A. Current-induced cleaning of graphene. Appl. Phys. Lett. 91, 163513 (2007).
Balandin, A. A. et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008).
Ferry, D. K., Gilbert, M. J. & Akis, R. Some considerations on nanowires in nanoelectronics. IEEE Trans. Electron. Dev. 55, 2820–2826 (2008).
Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).
Tans, S. J., Verschueren, A. R. M. & Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 393, 49–52 (1998).
Li, S., Yu, Z., Yen, S-F., Tang, W. C. & Burke, P. J. Carbon nanotube transistor operation at 2.6 GHz. Nano Lett. 4, 753–756 (2004).
Lee, S. et al. in Tech. Dig. IEDM 2007 255–258 (IEEE, 2007).
Nguyen, L. D., Tasker, P. J., Radulescu, D. C. & Eastman, L. F. Characterization of ultra-high-speed AlGaAs/InGaAs (on GaAs) MODFETs. IEEE Trans. Electron. Dev. 36, 2243–2248 (1989).
Acknowledgements
This work was financially supported by the 2008–2009 Excellence Research Grant of Technische Universität Ilmenau. The author thanks A. Castro Neto, K. Novoselov and Th. Seyller for discussions. He also thanks St. Thiele for his comments and for graphene MOSFET simulations, and M. Schlechtweg for providing GaAs metamorphic-HEMT data before publication.
Author information
Authors and Affiliations
Ethics declarations
Competing interests
The author declares no competing financial interests.
Rights and permissions
About this article
Cite this article
Schwierz, F. Graphene transistors. Nature Nanotech 5, 487–496 (2010). https://doi.org/10.1038/nnano.2010.89
Published:
Issue Date:
DOI: https://doi.org/10.1038/nnano.2010.89
This article is cited by
-
Graphene-based nanotechnology in the Internet of Things: a mini review
Discover Nano (2024)
-
Potential toxicity of graphene (oxide) quantum dots via directly covering the active site of anterior gradient homolog 2 protein
Scientific Reports (2024)
-
Ultrahigh-mobility semiconducting epitaxial graphene on silicon carbide
Nature (2024)
-
Synergistic-potential engineering enables high-efficiency graphene photodetectors for near- to mid-infrared light
Nature Communications (2024)
-
Strain-induced effects on the optoelectronic properties of ZrSe2/HfSe2 heterostructures
Journal of Molecular Modeling (2024)