Article | Published:

Hybrid superconductor–semiconductor devices made from self-assembled SiGe nanocrystals on silicon

Nature Nanotechnology volume 5, pages 458464 (2010) | Download Citation

Abstract

The epitaxial growth of germanium on silicon leads to the self-assembly of SiGe nanocrystals by a process that allows the size, composition and position of the nanocrystals to be controlled. This level of control, combined with an inherent compatibility with silicon technology, could prove useful in nanoelectronic applications. Here, we report the confinement of holes in quantum-dot devices made by directly contacting individual SiGe nanocrystals with aluminium electrodes, and the production of hybrid superconductor–semiconductor devices, such as resonant supercurrent transistors, when the quantum dot is strongly coupled to the electrodes. Charge transport measurements on weakly coupled quantum dots reveal discrete energy spectra, with the confined hole states displaying anisotropic gyromagnetic factors and strong spin–orbit coupling with pronounced dependences on gate voltage and magnetic field.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , , , & Ballistic carbon nanotube field-effect transistors. Nature 424, 654–657 (2003).

  2. 2.

    et al. Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 441, 489–493 (2006).

  3. 3.

    et al. CMOS-analogous wafer-scale nanotube-on-insulator approach for submicrometer devices and integrated circuits using aligned nanotubes. Nano Lett. 9, 189–197 (2009).

  4. 4.

    , , , & Lieber C. M. Vertically integrated, three-dimensional complementary metal-oxide–semiconductor circuits. Proc. Natl Acad. Sci. USA 106, 21035–21038 (2009).

  5. 5.

    & Dislocation-free Stranski–Krastanow growth of Ge on Si(100). Phys. Rev. Lett. 64, 1943–1946 (1990).

  6. 6.

    , , & Kinetic pathway in Stranski–Krastanov growth of Ge on Si(001). Phys. Rev. Lett. 65, 1020–1023 (1990).

  7. 7.

    et al. Shape transition of germanium nanocrystals on a silicon (001) surface from pyramids to domes. Science 279, 353–355 (1998).

  8. 8.

    , & Structural properties of self-organized semiconductor nanostructures. Rev. Mod. Phys. 76, 725–783 (2004).

  9. 9.

    et al. Kinetic origin of island intermixing during the growth of Ge on Si(001). Phys. Rev. B 72, 195320 (2005).

  10. 10.

    (ed.). Lateral Alignment of Epitaxial Quantum Dots (Springer, 2007).

  11. 11.

    et al. Positioning of strained islands by interaction with surface nanogrooves. Phys. Rev. Lett. 101, 096103 (2008).

  12. 12.

    & Self-assembled Ge/Si dots for faster field effect transistors. IEEE Trans. Electron Dev. 48, 1175–1179 (2001).

  13. 13.

    , , , & Ge/Si nanowire mesoscopic Josephson junctions. Nature Nanotech. 1, 208–213 (2006).

  14. 14.

    A Ge/Si heterostructure nanowire-based double quantum dot with integrated charge sensor. Nature Nanotech. 2, 622–625 (2007).

  15. 15.

    et al. Spin blockade and lifetime-enhanced transport in a few-electron Si/SiGe double quantum dot. Nature Phys. 4, 540–544 (2008).

  16. 16.

    et al. Charge sensing and controllable tunnel coupling in a Si/SiGe double quantum dot. Nano Lett. 9, 3234–3238 (2009).

  17. 17.

    et al. Lifetime measurements (T1) of electron spins in Si/SiGe quantum dots. Preprint at (2009).

  18. 18.

    et al. Single-hole transistor in p-Si/SiGe quantum well. Appl. Phys. Lett. 78, 341–343 (2001).

  19. 19.

    & Studies of spin–orbit scattering in noble-metal nanoparticles using energy-level tunneling spectroscopy. Phys. Rev. Lett. 87, 266801 (2001).

  20. 20.

    Spin–Orbit Coupling Effect in Two-Dimensional Electron and Hole Systems (Springer, 2004).

  21. 21.

    et al. Giant fluctuations and gate control of the g-factor in InAs nanowire quantum dots. Nano Lett. 8, 3932–3935 (2008).

  22. 22.

    et al. Giant, level-dependent g factors in InSb nanowire quantum dots. Nano Lett. 9, 3151–3156 (2009).

  23. 23.

    et al. Electrical control of spin coherence in semiconductor nanostructures. Nature 414, 619–622 (2001).

  24. 24.

    et al. Spin states of holes in Ge/Si nanowire quantum dots. Phys. Rev. Lett. 101, 186802 (2008).

  25. 25.

    et al. Lateral electron transport through single self-assembled InAs quantum dots. Appl. Phys. Lett. 86, 033106 (2005).

  26. 26.

    et al. Kondo effect in a semiconductor quantum dot coupled to ferromagnetic electrodes. Appl. Phys. Lett. 91, 232105 (2007).

  27. 27.

    , , , & Kondo universal scaling for a quantum dot coupled to superconducting leads. Phys. Rev. Lett. 99, 136806 (2007).

  28. 28.

    & Resonant Josephson current through Kondo impurities in a tunnel barrier. JETP Lett. 49, 659–662 (1989).

  29. 29.

    & Resonant Josephson current through a quantum dot, in Single-Electron Tunneling and Mesoscopic Devices (eds Koch, H. & Lübbig, H.) 175–179 (Springer, 1992), .

  30. 30.

    , & Quantum supercurrent transistors in carbon nanotubes. Nature 439, 953–956 (2006).

  31. 31.

    , , , & Carbon nanotube superconducting quantum interference device. Nature Nanotech. 1, 53–59 (2006).

  32. 32.

    , , , & Supercurrent reversal in quantum dots. Nature 442, 667–670 (2006).

  33. 33.

    , , & Superconductivity in a single-C60 transistor. Nature Phys. 5, 876–879 (2009).

  34. 34.

    , & Wave functions and g factor of holes in Ge/Si quantum dots. Phys. Rev. B 67, 205301 (2003).

  35. 35.

    & Anisotropy of g factor of free hole in Ge and conduction-band spin–orbit splitting. Phys. Rev. Lett. 22, 838–840 (1969).

  36. 36.

    , , , & Giant anisotropy of Zeeman splitting of quantum confined acceptors in Si/Ge. Phys. Rev. Lett. 96, 086403 (2006).

  37. 37.

    et al. Electron cotunneling in a semiconductor quantum dot. Phys. Rev. Lett. 86, 878–881 (2001).

  38. 38.

    et al. Multiple Andreev reflections in a carbon nanotube quantum dot. Phys. Rev. Lett. 91, 057005 (2003).

  39. 39.

    , , , & Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007).

  40. 40.

    , , & Gate control of spin–orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure. Phys. Rev. Lett. 78, 1335–1338 (1997).

  41. 41.

    , & Electric-dipole-induced spin resonance in quantum dots. Phys. Rev. B 74, 165319 (2006).

  42. 42.

    , , & Coherent control of a single electron spin with electric fields. Science 318, 1430–1433 (2007).

  43. 43.

    et al. Ballistic spin resonance. Nature 458, 868–871 (2009).

  44. 44.

    , , , & Direct measurement of the spin–orbit interaction in a two-electron InAs nanowire quantum dot. Phys. Rev. Lett. 98, 266801 (2007).

  45. 45.

    , , , & Quantum phase transition in a single-molecule quantum dot. Nature 453, 633–638 (2008).

  46. 46.

    , & Spin relaxation at the singlet–triplet crossing in a quantum dot. Phys. Rev. B 77, 045328 (2008).

  47. 47.

    et al. Large anisotropy of spin–orbit interaction in a single InAs self-assembled quantum dot. Preprint at (2009).

  48. 48.

    et al. The Kondo effect in the presence of ferromagnetism. Science 306, 86–89 (2004).

  49. 49.

    , & Lindelof P. E. Electric-field-controlled spin reversal in a quantum dot with ferromagnetic contacts. Nature Phys. 4, 373–376 (2008).

  50. 50.

    , , & Anomalous Josephson current through a spin–orbit coupled quantum dot. Phys. Rev. Lett. 103, 147004 (2009).

Download references

Acknowledgements

The authors thank T. Haccart and the PTA cleanroom team of CEA, J.-L. Thomassin and F. Gustavo for their help in device fabrication, and T. Fournier for helpful discussions and providing free access to fabrication recipes and equipment at the NANOFAB facility of the Néel Institute. We also acknowledge helpful discussions with M. Houzet, V. Golovach, W. Wernsdorfer, D. Feinberg, G. Usaj, R. Whitney, M. Sanquer, X. Jehl, G. A. Steele and E. J. H. Lee, and support from the Agence Nationale de la Recherche (through the ACCESS and COHESION projects). G.K. acknowledges further support from the Deutsche Forschungsgemeinschaft (grant no. KA 2922/1-1).

Author information

Affiliations

  1. CEA, INAC/SPSMS/LaTEQS, 17 Rue des Martyrs, 38054 Grenoble, France

    • G. Katsaros
    • , P. Spathis
    • , M. Mongillo
    • , F. Lefloch
    •  & S. De Franceschi
  2. IFW-Dresden, Institute for Integrative Nanosciences, Helmholtzstrasse 20, 01069 Dresden, Germany

    • M. Stoffel
    • , A. Rastelli
    •  & O. G. Schmidt
  3. CEA, LETI, MINATEC, F38054 Grenoble, France

    • F. Fournel
  4. Institut Néel, CNRS and Université Joseph Fourier, BP 166, 38042 Grenoble cedex 9, France

    • V. Bouchiat

Authors

  1. Search for G. Katsaros in:

  2. Search for P. Spathis in:

  3. Search for M. Stoffel in:

  4. Search for F. Fournel in:

  5. Search for M. Mongillo in:

  6. Search for V. Bouchiat in:

  7. Search for F. Lefloch in:

  8. Search for A. Rastelli in:

  9. Search for O. G. Schmidt in:

  10. Search for S. De Franceschi in:

Contributions

G.K. and S.D.F. planned the experiment, interpreted the data and co-wrote the paper. G.K. fabricated the devices, performed the measurements with P.S. and S.D.F., and analysed the data. P.S. participated in the data analysis and set up the dilution refrigerator. M.S. grew the SiGe self-assembled nanocrystal samples. F.F. fabricated the non-standard SOI wafers. M.M., V.B. and F.L. provided important help in device fabrication. A.R. and O.G.S. supervised the growth of the self-assembled SiGe nanocrystals. All authors discussed the results and commented on the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to G. Katsaros or S. De Franceschi.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nnano.2010.84

Further reading