Abstract
The detection of photons underpins imaging, spectroscopy, fibre-optic communications and time-gated distance measurements. Nanostructured materials are attractive for detection applications because they can be integrated with conventional silicon electronics and flexible, large-area substrates, and can be processed from the solution phase using established techniques such as spin casting, spray coating and layer-by-layer deposition. In addition, their performance has improved rapidly in recent years. Here we review progress in light sensing using nanostructured materials, focusing on solution-processed materials such as colloidal quantum dots and metal nanoparticles. These devices exhibit phenomena such as absorption of ultraviolet light, plasmonic enhancement of absorption, size-based spectral tuning, multiexciton generation, and charge carrier storage in surface and interface traps.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Change history
04 June 2010
In the version of this Review originally published online, an error led to Fig. 2c appearing incorrectly; this has now been corrected.
06 December 2010
In the version of this Review originally published, part of a sentence in Table 1 was missing. This error has now been corrected in the HTML and PDF versions of the text.
References
Bartels, R. A. et al. Generation of spatially coherent light at extreme ultraviolet wavelengths. Science 297, 376–378 (2002).
Zeskind, B. J. et al. Nucleic acid and protein mass mapping by live-cell deep-ultraviolet microscopy. Nature Methods 4, 567–569 (2007).
Dawes, D. G. & Turner, D. Some like it hot. Photonics Spectra 42, 72–74 (2008).
Formisano, V., Atreya, S., Encrenaz, T., Ignatiev, N. & Giuranna, M. Detection of methane in the atmosphere of Mars. Science 306, 1758–1761 (2004).
Fossum, E. R. CMOS image sensors: electronic camera-on-a-chip. IEEE Trans. Electron. Dev. 44, 1689–1698 (1997).
Les, C. B. Image sensor market: Changing, but moving upward. Photonics Spectra 43, 27–28 (2009).
El Gamal, A. & Eltoukhy, H. CMOS image sensors. IEEE Circuits Devices Mag. 21, 6–20 (2005).
Herzinger, C. M., Johs, B., McGahan, W. A., Woollam, J. A. & Paulson, W. Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation. J. Appl. Phys. 83, 3323–3336 (1998).
Minoglou, K. et al. Reduction of electrical crosstalk in hybrid backside illuminated CMOS imagers using deep trench isolation. 2008 IEEE Int. Interconnect Technol. Conf. 129–131 (2008).
Prydderch, M. et al. A large area CMOS monolithic active pixel sensor for extreme ultra violet spectroscopy and imaging. Proc. SPIE 5301, 175–185 (2004).
Sosnowski, L., Starkiewicz, J. & Simpson, O. Lead sulphide photoconductive cells. Nature 159, 818–819 (1947).
Espevik, S., Wu, C. H. & Bube, R. H. Mechanism of photoconductivity in chemically deposited lead sulfide layers. J. Appl. Phys. 42, 3513–3529 (1971).
Kanno, T. et al. Uncooled infrared focal plane array having 128 x 128 thermopile detector elements. Proc. SPIE 2269, 450–459 (1994).
Nausieda, I. et al. An organic active-matrix imager. IEEE Trans. Electron Devices 55, 527–532 (2008).
Shchukin, V. A. & Bimberg, D. Spontaneous ordering of nanostructures on crystal surfaces. Rev. Mod. Phys. 71, 1125–1171 (1999).
Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).
Sun, Y. & Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176–2179 (2002).
Brus, L. Electronic wave functions in semiconductor clusters: Experiment and theory. J. Phys. Chem. 90, 2555–2560 (1986).
Kelly, K. L., Coronado, E., Zhao, L. L. & Schatz, G. C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668–677 (2003).
Mi, Z., Yang, J., Bhattacharya, P., Qin, G. & Ma, Z. High-performance quantum dot lasers and integrated optoelectronics on Si. Proc. IEEE 97, 1239–1249 (2009).
Talapin, D. V. & Murray, C. B. PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors. Science 310, 86–89 (2005).
Yu, D., Wang, C., Wehrenberg, B. L. & Guyot-Sionnest, P. Variable range hopping conduction in semiconductor nanocrystal solids. Phys. Rev. Lett. 92, 216802 (2004).
Pandey, A. & Guyot-Sionnest, P. Slow electron cooling in colloidal quantum dots. Science 322, 929–932 (2008).
Schaller, R. D. & Klimov, V. I. High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion. Phys. Rev. Lett. 92, 186601 (2004).
Klimov, V. I. et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314–317 (2000).
Klimov, V. I., Mikhailovsky, A. A., McBranch, D. W., Leatherdale, C. A. & Bawendi, M. G. Quantization of multiparticle Auger rates in semiconductor quantum dots. Science 287, 1011–1014 (2000).
Klimov, V. I. Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals. J. Phys. Chem. B 104, 6112–6123 (2000).
Ellingson, R. J. et al. Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett. 5, 865–871 (2005).
Yu, G., Pakbaz, K. & Heeger, A. J. Semiconducting polymer diodes: Large size, low cost photodetectors with excellent visible-ultraviolet sensitivity. Appl. Phys. Lett. 64, 3422–3424 (1994).
Greenham, N. C., Peng, X. & Alivisatos, A. P. Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Phys. Rev. B 54, 17628–17637 (1996).
Peumans, P., Bulovic, V. & Forrest, S. R. Efficient, high-bandwidth organic multilayer photodetectors. Appl. Phys. Lett. 76, 3855–3857 (2000).
Oertel, D. C., Bawendi, M. G., Arango, A. C. & Bulovic, V. Photodetectors based on treated CdSe quantum-dot films. Appl. Phys. Lett. 87, 213505 (2005).
Konstantatos, G. et al. Ultrasensitive solution-cast quantum dot photodetectors. Nature 442, 180–183 (2006).
Konstantatos, G., Clifford, J., Levina, L. & Sargent, E. H. Sensitive solution-processed visible-wavelength photodetectors. Nature Photon. 1, 531–534 (2007).
Boberl, M., Kovalenko, M. V., Gamerith, S., List, E. J. W. & Heiss, W. Inkjet-printed nanocrystal photodetectors operating up to 3 um wavelengths. Adv. Mater. 19, 3574–3578 (2007).
Chen, H. Y., Lo, M. K. F., Yang, G., Monbouquette, H. G. & Yang, Y. Nanoparticle-assisted high photoconductive gain in composites of polymer and fullerene. Nat. Nanotech. 3, 543–547 (2008).
Hinds, S. et al. Smooth-morphology ultrasensitive solution-processed photodetectors. Adv. Mater. 20, 4398–4402 (2008).
Konstantatos, G., Levina, L., Fischer, A. & Sargent, E. H. Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states. Nano Lett. 8, 1446–1450 (2008).
Konstantatos, G., Levina, L., Tang, J. & Sargent, E. H. Sensitive solution-processed Bi2S3 nanocrystalline photodetectors. Nano Lett. 8, 4002–4006 (2008).
Jin, Y., Wang, J., Sun, B., Blakesley, J. C. & Greenham, N. C. Solution-processed ultraviolet photodetectors based on colloidal ZnO nanoparticles. Nano Lett. 8, 1649–1653 (2008).
Sukhovatkin, V., Hinds, S., Brzozowski, L. & Sargent, E. H. Colloidal quantum-dot photodetectors exploiting multiexciton generation. Science 324, 1542–1544 (2009).
Clifford, J. P. et al. Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors. Nature Nanotech. 4, 40–44 (2009).
Rauch, T. et al. Near-infrared imaging with quantum-dot-sensitized organic photodiodes. Nature Photon. 3, 332–336 (2009).
Gong, X. et al. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science 325, 1665–1667 (2009).
Pourret, A., Guyot-Sionnest, P. & Elam, J. W. Atomic layer deposition of ZnO in quantum dot thin films. Adv. Mater. 21, 232–235 (2009).
Petritz, R. L. Theory of photoconductivity in semiconductor films. Phys. Rev. 104, 1508–1516 (1956).
Cova, S., Ghioni, M., Lacaita, A., Samori, C. & Zappa, F. Avalanche photodiodes and quenching circuits for single-photon detection. Appl. Opt. 35, 1956–1976 (1996).
Piotrowski, J. & Gawron, W. Ultimate performance of infrared photodetectors and figure of merit of detector material. Infrared Phys. Technol. 38, 63–68 (1997).
Johnston, K. W. et al. Efficient Schottky-quantum-dot photovoltaics: The roles of depletion, drift, and diffusion. Appl. Phys. Lett. 92, 122111 (2008).
Clark, S. W., Harbold, J. M. & Wise, F. W. Resonant energy transfer in PbS quantum dots. J. Phys. Chem. C 111, 7302–7305 (2007).
Klem, E. J. D., MacNeil, D. D., Cyr, P. W., Levina, L. & Sargent, E. H. Efficient solution-processed infrared photovoltaic cells: Planarized all-inorganic bulk heterojunction devices via inter-quantum-dot bridging during growth from solution. Appl. Phys. Lett. 90, 183113 (2007).
Johnston, K. W. et al. Schottky-quantum dot photovoltaics for efficient infrared power conversion. Appl. Phys. Lett. 92, 151115 (2008).
Koleilat, G. I. et al. Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots. ACS Nano 2, 833–840 (2008).
Luther, J. M. et al. Schottky solar cells based on colloidal nanocrystal films. Nano Lett. 8, 3488–3492 (2008).
Law, M. et al. Determining the internal quantum efficiency of PbSe nanocrystal solar cells with the aid of an optical model. Nano Lett. 8, 3904–3910 (2008).
Ma, W., Luther, J. M., Zheng, H., Wu, Y. & Alivisatos, A. P. Photovoltaic devices employing ternary PbSxSe1-x nanocrystals. Nano Lett. 9, 1699–1703 (2009).
Barkhouse, D. A. R., Pattantyus-Abraham, A. G., Levina, L. & Sargent, E. H. Thiols passivate recombination centers in colloidal quantum dots leading to enhanced photovoltaic device efficiency. ACS Nano 2, 2356–2362 (2008).
Coakley, K. M. & McGehee, M. D. Conjugated polymer photovoltaic cells. Chem. Mater. 16, 4533–4542 (2004).
Ettenberg, M. A little night vision. Advanced Imaging 20, 29–32 (2005).
McDonald, S. A. et al. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nature Mater. 4, 138–142 (2005).
Osedach, T. P. et al. Lateral heterojunction photodetector consisting of molecular organic and colloidal quantum dot thin films. Appl. Phys. Lett. 94, 043307 (2009).
Bube, R. Photoconductivity of Solids (Wiley, 1960).
Rose, A. Concepts in Photoconductivity and Allied Problems 168 (Wiley, 1963).
Mahlman, G. W. Photoconductivity of lead sulfide films. Phys. Rev. 103, 1619–1630 (1956).
Greenham, N. C., Peng, X. & Alivisatos, A. P. Charge separation and transport in conjugated polymer/cadmium selenide nanocrystal composites studied by photoluminescence quenching and photoconductivity. Synth. Met. 84, 545–546 (1997).
Huynh, W. U., Dittmer, J. J. & Alivisatos, A. P. Hybrid nanorod-polymer solar cells. Science 295, 2425–2427 (2002).
Milliron, D. et al. Colloidal nanocrystal heterostructures with linear and branched topology. Nature 430, 190–195 (2004).
Nozik, A. J. Multiple exciton generation in semiconductor quantum dots. Chem. Phys. Lett. 457, 3–11 (2008).
Smith, A. & Dutton, D. Behavior of Lead Sulfide Photocells in the Ultraviolet. J. Opt. Soc. Am. 48, 1007–1009 (1958).
Kim, S. J., Kim, W. J., Sahoo, Y., Cartwright, A. N. & Prasad, P. N. Multiple exciton generation and electrical extraction from a PbSe quantum dot photoconductor. Appl. Phys. Lett. 92, 031107 (2008).
Kim, S. J., Kim, W. J., Cartwright, A. N. & Prasad, P. N. Carrier multiplication in a PbSe nanocrystal and P3HT/PCBM tandem cell. Appl. Phys. Lett. 92, 191107 (2008).
McGuire, J. A., Joo, J., Pietryga, J. M., Schaller, R. D. & Klimov, V. I. New aspects of carrier multiplication in semiconductor nanocrystals. Acc. Chem. Res. 41, 1810–1819 (2008).
Nair, G., Geyer, S. M., Chang, L. Y. & Bawendi, M. G. Carrier multiplication yields in PbS and PbSe nanocrystals measured by transient photoluminescence. Phys. Rev. B 78, 125325 (2008).
Pijpers, J. J. H. et al. Assessment of carrier-multiplication efficiency in bulk PbSe and PbS. Nature Phys. 5, 811–814 (2009).
Nozik, A. J. Making the most of photons. Nature Nanotech. 4, 548–549 (2009).
Gabor, N. M., Zhong, Z., Bosnick, K., Park, J. & McEuen, P. L. Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes. Science 325, 1367–1371 (2009).
Lee, J. U., Gipp, P. P. & Heller, C. M. Carbon nanotube p-n junction diodes. Appl. Phys. Lett. 85, 145–147 (2004).
Hayden, O., Agarwal, R. & Lieber, C. M. Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection. Nature Mater. 5, 352–356 (2006).
Peumans, P., Yakimov, A. & Forrest, S. R. Small molecular weight organic thin-film photodetectors and solar cells. J. Appl. Phys. 93, 3693–3723 (2003).
Winder, C. & Sariciftci, N. S. Low bandgap polymers for photon harvesting in bulk heterojunction solar cells. J. Mater. Chem. 14, 1077–1086 (2004).
Xia, Y. et al. Photocurrent response wavelength up to 1.1 um from photovoltaic cells based on narrow-band-gap conjugated polymer and fullerene derivative. Appl. Phys. Lett. 89, 081106 (2006).
Wang, D. et al. Ultralong single-crystalline Ag2S nanowires: Promising candidates for photoswitches and room-temperature oxygen sensors. Adv. Mater. 20, 2628–2632 (2008).
Konstantatos, G., Levina, L., Tang, J. & Sargent, E. H. Sensitive solution-processed Bi2S3 nanocrystalline photodetectors. Nano Lett. 8, 4002–4006 (2008).
Tang, J. et al. Heavy-metal-free solution-processed nanoparticle-based photodetectors: doping of intrinsic vacancies enables engineering of sensitivity and speed. ACS Nano 3, 331–338 (2009).
Wu, Y., Wadia, C., Ma, W., Sadtler, B. & Alivisatos, A. P. Synthesis and photovoltaic application of copper(1) sulfide nanocrystals. Nano Lett. 8, 2345–2350 (2008).
Gur, I., Fromer, N. A., Geier, M. L. & Alivisatos, A. P. Materials science: Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 310, 462–465 (2005).
Tang, J. et al. Schottky quantum dot solar cells stable in air under solar illumination. Adv. Mater. 22, 1398–1402 (2010).
Ozbay, E. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006).
Maier, S. A. et al. Plasmonics - A route to nanoscale optical devices. Adv. Mater. 13, 1501–1505 (2001).
Yu, Z., Veronis, G., Fan, S. & Brongersma, M. L. Design of midinfrared photodetectors enhanced by surface plasmons on grating structures. Appl. Phys. Lett. 89, 151116 (2006).
Pillai, S., Catchpole, K. R., Trupke, T. & Green, M. A. Surface plasmon enhanced silicon solar cells. J. Appl. Phys. 101, 093105 (2007).
Tang, L. et al. Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna. Nature Photon. 2, 226–229 (2008).
Polman, A. Applied physics: Plasmonics applied. Science 322, 868–869 (2008).
White, J. S. et al. Extraordinary optical absorption through subwavelength slits. Opt. Lett. 34, 686–688 (2009).
Bhat, R. D. R., Panoiu, N. C., Brueck, S. R. J. & Osgood Jr, R. M. Enhancing the signal-to-noise ratio of an infrared photodetector with a circular metal grating. Opt. Express 16, 4588–4596 (2008).
Ishi, T., Fujikata, J., Marita, K., Baba, T. & Ohashi, K. Si nano-photodiode with a surface plasmon antenna. Jpn. J. Appl. Phys. 44, L364–L366 (2005).
Ferry, V. E., Sweatlock, L. A., Pacifici, D. & Atwater, H. A. Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Lett. 8, 4391–4397 (2008).
Pala, R. A., White, J., Barnard, E., Liu, J. & Brongersma, M. L. Design of plasmonic thin-film solar cells with broadband absorption enhancements. Adv. Mater. 21, 3504–3509 (2009).
Cao, L. et al. Engineering light absorption in semiconductor nanowire devices. Nature Mater. 8, 643–647 (2009).
Stuart, H. R. & Hall, D. G. Island size effects in nanoparticle-enhanced photodetectors. Appl. Phys. Lett. 73, 3815–3817 (1998).
Maier, S. A. The best of both worlds. Nature Photonics 2, 460–461 (2008).
Zia, R., Schuller, J. A., Chandran, A. & Brongersma, M. L. Plasmonics: the next chip-scale technology. Mater. Today 9, 20–27 (2006).
Noginov, M. A. et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009).
De Vlaminck, I., Van Dorpe, P., Lagae, L. & Borghs, G. Local electrical detection of single nanoparticle plasmon resonance. Nano Lett. 7, 703–706 (2007).
Neutens, P., Van Dorpe, P., De Vlaminck, I., Lagae, L. & Borghs, G. Electrical detection of confined gap plasmons in metal-insulator-metal waveguides. Nature Photon. 3, 283–286 (2009).
Shackleford, J. A., Grote, R., Currie, M., Spanier, J. E. & Nabet, B. Integrated plasmonic lens photodetector. Appl. Phys. Lett. 94, 083501 (2009).
Falk, A. L. et al. Near-field electrical detection of optical plasmons and single-plasmon sources. Nature Phys. 5, 475–479 (2009).
Lee, J. S., Shevchenko, E. V. & Talapin, D. V. Au-PbS core-shell nanocrystals: Plasmonic absorption enhancement and electrical doping via intra-particle charge transfer. J. Am. Chem. Soc. 130, 9673–9675 (2008).
Bakr, O. M. et al. Silver nanoparticles with broad multiband linear optical absorption. Angew. Chem. Int. Ed. 48, 5921–5926 (2009).
Nakanishi, H. et al. Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles. Nature 460, 371–375 (2009).
Acknowledgements
We acknowledge support from King Abdullah University of Science and Technology (award no. KUS-I1-009-21), the Natural Sciences and Engineering Research Council of Canada (NSERC I2I programme), the Ontario Centers of Excellence, the Canada Foundation for Innovation and Ontario Innovation Trust, and the Canada Research Chairs.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
Edward Sargent is a significant shareholder in a private company, InVisage Technologies. InVisage is commercializing imaging technologies based on colloidal quantum dots. These technologies were licensed by InVisage from Sargent's group at the University of Toronto. Some research papers describing related technologies are cited and summarized in this Review.
Rights and permissions
About this article
Cite this article
Konstantatos, G., Sargent, E. Nanostructured materials for photon detection. Nature Nanotech 5, 391–400 (2010). https://doi.org/10.1038/nnano.2010.78
Published:
Issue Date:
DOI: https://doi.org/10.1038/nnano.2010.78
This article is cited by
-
Silver telluride colloidal quantum dot infrared photodetectors and image sensors
Nature Photonics (2024)
-
Tunable Elliptical Torus Metamaterial Absorber for Light Absorption in the Optical Region
Plasmonics (2024)
-
Controlled addition of Fe3O4 for enhancing photocarrier generation in MoS2 visible light photodetector
Journal of Materials Science: Materials in Electronics (2024)
-
Suppression of Leakage Currents in Photo-multiplication Photodetectors with Oxidation-Controlled Metal Interfacial Layer
Electronic Materials Letters (2024)
-
Decidual derived exosomal miR-99a-5p targets Ppp2r5a to inhibit trophoblast invasion in response to CeO2NPs exposure
Particle and Fibre Toxicology (2023)