Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nanostructured materials for photon detection

An Erratum to this article was published on 06 December 2010

This article has been updated

Abstract

The detection of photons underpins imaging, spectroscopy, fibre-optic communications and time-gated distance measurements. Nanostructured materials are attractive for detection applications because they can be integrated with conventional silicon electronics and flexible, large-area substrates, and can be processed from the solution phase using established techniques such as spin casting, spray coating and layer-by-layer deposition. In addition, their performance has improved rapidly in recent years. Here we review progress in light sensing using nanostructured materials, focusing on solution-processed materials such as colloidal quantum dots and metal nanoparticles. These devices exhibit phenomena such as absorption of ultraviolet light, plasmonic enhancement of absorption, size-based spectral tuning, multiexciton generation, and charge carrier storage in surface and interface traps.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photodiodes and photoconductors: charge-separation mechanisms, device structures and configurations.
Figure 2: Trap engineering in photoconductors.
Figure 3: Plasmonics for enhanced photodetection.

Similar content being viewed by others

Change history

  • 04 June 2010

    In the version of this Review originally published online, an error led to Fig. 2c appearing incorrectly; this has now been corrected.

  • 06 December 2010

    In the version of this Review originally published, part of a sentence in Table 1 was missing. This error has now been corrected in the HTML and PDF versions of the text.

References

  1. Bartels, R. A. et al. Generation of spatially coherent light at extreme ultraviolet wavelengths. Science 297, 376–378 (2002).

    CAS  Google Scholar 

  2. Zeskind, B. J. et al. Nucleic acid and protein mass mapping by live-cell deep-ultraviolet microscopy. Nature Methods 4, 567–569 (2007).

    CAS  Google Scholar 

  3. Dawes, D. G. & Turner, D. Some like it hot. Photonics Spectra 42, 72–74 (2008).

    Google Scholar 

  4. Formisano, V., Atreya, S., Encrenaz, T., Ignatiev, N. & Giuranna, M. Detection of methane in the atmosphere of Mars. Science 306, 1758–1761 (2004).

    CAS  Google Scholar 

  5. Fossum, E. R. CMOS image sensors: electronic camera-on-a-chip. IEEE Trans. Electron. Dev. 44, 1689–1698 (1997).

    Google Scholar 

  6. Les, C. B. Image sensor market: Changing, but moving upward. Photonics Spectra 43, 27–28 (2009).

    Google Scholar 

  7. El Gamal, A. & Eltoukhy, H. CMOS image sensors. IEEE Circuits Devices Mag. 21, 6–20 (2005).

    Google Scholar 

  8. Herzinger, C. M., Johs, B., McGahan, W. A., Woollam, J. A. & Paulson, W. Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation. J. Appl. Phys. 83, 3323–3336 (1998).

    CAS  Google Scholar 

  9. Minoglou, K. et al. Reduction of electrical crosstalk in hybrid backside illuminated CMOS imagers using deep trench isolation. 2008 IEEE Int. Interconnect Technol. Conf. 129–131 (2008).

  10. Prydderch, M. et al. A large area CMOS monolithic active pixel sensor for extreme ultra violet spectroscopy and imaging. Proc. SPIE 5301, 175–185 (2004).

    Google Scholar 

  11. Sosnowski, L., Starkiewicz, J. & Simpson, O. Lead sulphide photoconductive cells. Nature 159, 818–819 (1947).

    CAS  Google Scholar 

  12. Espevik, S., Wu, C. H. & Bube, R. H. Mechanism of photoconductivity in chemically deposited lead sulfide layers. J. Appl. Phys. 42, 3513–3529 (1971).

    CAS  Google Scholar 

  13. Kanno, T. et al. Uncooled infrared focal plane array having 128 x 128 thermopile detector elements. Proc. SPIE 2269, 450–459 (1994).

    CAS  Google Scholar 

  14. Nausieda, I. et al. An organic active-matrix imager. IEEE Trans. Electron Devices 55, 527–532 (2008).

    CAS  Google Scholar 

  15. Shchukin, V. A. & Bimberg, D. Spontaneous ordering of nanostructures on crystal surfaces. Rev. Mod. Phys. 71, 1125–1171 (1999).

    CAS  Google Scholar 

  16. Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

    CAS  Google Scholar 

  17. Sun, Y. & Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176–2179 (2002).

    CAS  Google Scholar 

  18. Brus, L. Electronic wave functions in semiconductor clusters: Experiment and theory. J. Phys. Chem. 90, 2555–2560 (1986).

    CAS  Google Scholar 

  19. Kelly, K. L., Coronado, E., Zhao, L. L. & Schatz, G. C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668–677 (2003).

    CAS  Google Scholar 

  20. Mi, Z., Yang, J., Bhattacharya, P., Qin, G. & Ma, Z. High-performance quantum dot lasers and integrated optoelectronics on Si. Proc. IEEE 97, 1239–1249 (2009).

    CAS  Google Scholar 

  21. Talapin, D. V. & Murray, C. B. PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors. Science 310, 86–89 (2005).

    CAS  Google Scholar 

  22. Yu, D., Wang, C., Wehrenberg, B. L. & Guyot-Sionnest, P. Variable range hopping conduction in semiconductor nanocrystal solids. Phys. Rev. Lett. 92, 216802 (2004).

    Google Scholar 

  23. Pandey, A. & Guyot-Sionnest, P. Slow electron cooling in colloidal quantum dots. Science 322, 929–932 (2008).

    CAS  Google Scholar 

  24. Schaller, R. D. & Klimov, V. I. High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion. Phys. Rev. Lett. 92, 186601 (2004).

    CAS  Google Scholar 

  25. Klimov, V. I. et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314–317 (2000).

    CAS  Google Scholar 

  26. Klimov, V. I., Mikhailovsky, A. A., McBranch, D. W., Leatherdale, C. A. & Bawendi, M. G. Quantization of multiparticle Auger rates in semiconductor quantum dots. Science 287, 1011–1014 (2000).

    CAS  Google Scholar 

  27. Klimov, V. I. Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals. J. Phys. Chem. B 104, 6112–6123 (2000).

    CAS  Google Scholar 

  28. Ellingson, R. J. et al. Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett. 5, 865–871 (2005).

    CAS  Google Scholar 

  29. Yu, G., Pakbaz, K. & Heeger, A. J. Semiconducting polymer diodes: Large size, low cost photodetectors with excellent visible-ultraviolet sensitivity. Appl. Phys. Lett. 64, 3422–3424 (1994).

    CAS  Google Scholar 

  30. Greenham, N. C., Peng, X. & Alivisatos, A. P. Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Phys. Rev. B 54, 17628–17637 (1996).

    CAS  Google Scholar 

  31. Peumans, P., Bulovic, V. & Forrest, S. R. Efficient, high-bandwidth organic multilayer photodetectors. Appl. Phys. Lett. 76, 3855–3857 (2000).

    CAS  Google Scholar 

  32. Oertel, D. C., Bawendi, M. G., Arango, A. C. & Bulovic, V. Photodetectors based on treated CdSe quantum-dot films. Appl. Phys. Lett. 87, 213505 (2005).

    Google Scholar 

  33. Konstantatos, G. et al. Ultrasensitive solution-cast quantum dot photodetectors. Nature 442, 180–183 (2006).

    CAS  Google Scholar 

  34. Konstantatos, G., Clifford, J., Levina, L. & Sargent, E. H. Sensitive solution-processed visible-wavelength photodetectors. Nature Photon. 1, 531–534 (2007).

    CAS  Google Scholar 

  35. Boberl, M., Kovalenko, M. V., Gamerith, S., List, E. J. W. & Heiss, W. Inkjet-printed nanocrystal photodetectors operating up to 3 um wavelengths. Adv. Mater. 19, 3574–3578 (2007).

    Google Scholar 

  36. Chen, H. Y., Lo, M. K. F., Yang, G., Monbouquette, H. G. & Yang, Y. Nanoparticle-assisted high photoconductive gain in composites of polymer and fullerene. Nat. Nanotech. 3, 543–547 (2008).

    CAS  Google Scholar 

  37. Hinds, S. et al. Smooth-morphology ultrasensitive solution-processed photodetectors. Adv. Mater. 20, 4398–4402 (2008).

    CAS  Google Scholar 

  38. Konstantatos, G., Levina, L., Fischer, A. & Sargent, E. H. Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states. Nano Lett. 8, 1446–1450 (2008).

    CAS  Google Scholar 

  39. Konstantatos, G., Levina, L., Tang, J. & Sargent, E. H. Sensitive solution-processed Bi2S3 nanocrystalline photodetectors. Nano Lett. 8, 4002–4006 (2008).

    CAS  Google Scholar 

  40. Jin, Y., Wang, J., Sun, B., Blakesley, J. C. & Greenham, N. C. Solution-processed ultraviolet photodetectors based on colloidal ZnO nanoparticles. Nano Lett. 8, 1649–1653 (2008).

    CAS  Google Scholar 

  41. Sukhovatkin, V., Hinds, S., Brzozowski, L. & Sargent, E. H. Colloidal quantum-dot photodetectors exploiting multiexciton generation. Science 324, 1542–1544 (2009).

    CAS  Google Scholar 

  42. Clifford, J. P. et al. Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors. Nature Nanotech. 4, 40–44 (2009).

    CAS  Google Scholar 

  43. Rauch, T. et al. Near-infrared imaging with quantum-dot-sensitized organic photodiodes. Nature Photon. 3, 332–336 (2009).

    CAS  Google Scholar 

  44. Gong, X. et al. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science 325, 1665–1667 (2009).

    CAS  Google Scholar 

  45. Pourret, A., Guyot-Sionnest, P. & Elam, J. W. Atomic layer deposition of ZnO in quantum dot thin films. Adv. Mater. 21, 232–235 (2009).

    CAS  Google Scholar 

  46. Petritz, R. L. Theory of photoconductivity in semiconductor films. Phys. Rev. 104, 1508–1516 (1956).

    CAS  Google Scholar 

  47. Cova, S., Ghioni, M., Lacaita, A., Samori, C. & Zappa, F. Avalanche photodiodes and quenching circuits for single-photon detection. Appl. Opt. 35, 1956–1976 (1996).

    CAS  Google Scholar 

  48. Piotrowski, J. & Gawron, W. Ultimate performance of infrared photodetectors and figure of merit of detector material. Infrared Phys. Technol. 38, 63–68 (1997).

    CAS  Google Scholar 

  49. Johnston, K. W. et al. Efficient Schottky-quantum-dot photovoltaics: The roles of depletion, drift, and diffusion. Appl. Phys. Lett. 92, 122111 (2008).

    Google Scholar 

  50. Clark, S. W., Harbold, J. M. & Wise, F. W. Resonant energy transfer in PbS quantum dots. J. Phys. Chem. C 111, 7302–7305 (2007).

    CAS  Google Scholar 

  51. Klem, E. J. D., MacNeil, D. D., Cyr, P. W., Levina, L. & Sargent, E. H. Efficient solution-processed infrared photovoltaic cells: Planarized all-inorganic bulk heterojunction devices via inter-quantum-dot bridging during growth from solution. Appl. Phys. Lett. 90, 183113 (2007).

    Google Scholar 

  52. Johnston, K. W. et al. Schottky-quantum dot photovoltaics for efficient infrared power conversion. Appl. Phys. Lett. 92, 151115 (2008).

    Google Scholar 

  53. Koleilat, G. I. et al. Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots. ACS Nano 2, 833–840 (2008).

    CAS  Google Scholar 

  54. Luther, J. M. et al. Schottky solar cells based on colloidal nanocrystal films. Nano Lett. 8, 3488–3492 (2008).

    CAS  Google Scholar 

  55. Law, M. et al. Determining the internal quantum efficiency of PbSe nanocrystal solar cells with the aid of an optical model. Nano Lett. 8, 3904–3910 (2008).

    CAS  Google Scholar 

  56. Ma, W., Luther, J. M., Zheng, H., Wu, Y. & Alivisatos, A. P. Photovoltaic devices employing ternary PbSxSe1-x nanocrystals. Nano Lett. 9, 1699–1703 (2009).

    CAS  Google Scholar 

  57. Barkhouse, D. A. R., Pattantyus-Abraham, A. G., Levina, L. & Sargent, E. H. Thiols passivate recombination centers in colloidal quantum dots leading to enhanced photovoltaic device efficiency. ACS Nano 2, 2356–2362 (2008).

    CAS  Google Scholar 

  58. Coakley, K. M. & McGehee, M. D. Conjugated polymer photovoltaic cells. Chem. Mater. 16, 4533–4542 (2004).

    CAS  Google Scholar 

  59. Ettenberg, M. A little night vision. Advanced Imaging 20, 29–32 (2005).

    Google Scholar 

  60. McDonald, S. A. et al. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nature Mater. 4, 138–142 (2005).

    CAS  Google Scholar 

  61. Osedach, T. P. et al. Lateral heterojunction photodetector consisting of molecular organic and colloidal quantum dot thin films. Appl. Phys. Lett. 94, 043307 (2009).

    Google Scholar 

  62. Bube, R. Photoconductivity of Solids (Wiley, 1960).

    Google Scholar 

  63. Rose, A. Concepts in Photoconductivity and Allied Problems 168 (Wiley, 1963).

    Google Scholar 

  64. Mahlman, G. W. Photoconductivity of lead sulfide films. Phys. Rev. 103, 1619–1630 (1956).

    CAS  Google Scholar 

  65. Greenham, N. C., Peng, X. & Alivisatos, A. P. Charge separation and transport in conjugated polymer/cadmium selenide nanocrystal composites studied by photoluminescence quenching and photoconductivity. Synth. Met. 84, 545–546 (1997).

    CAS  Google Scholar 

  66. Huynh, W. U., Dittmer, J. J. & Alivisatos, A. P. Hybrid nanorod-polymer solar cells. Science 295, 2425–2427 (2002).

    CAS  Google Scholar 

  67. Milliron, D. et al. Colloidal nanocrystal heterostructures with linear and branched topology. Nature 430, 190–195 (2004).

    CAS  Google Scholar 

  68. Nozik, A. J. Multiple exciton generation in semiconductor quantum dots. Chem. Phys. Lett. 457, 3–11 (2008).

    CAS  Google Scholar 

  69. Smith, A. & Dutton, D. Behavior of Lead Sulfide Photocells in the Ultraviolet. J. Opt. Soc. Am. 48, 1007–1009 (1958).

    CAS  Google Scholar 

  70. Kim, S. J., Kim, W. J., Sahoo, Y., Cartwright, A. N. & Prasad, P. N. Multiple exciton generation and electrical extraction from a PbSe quantum dot photoconductor. Appl. Phys. Lett. 92, 031107 (2008).

    Google Scholar 

  71. Kim, S. J., Kim, W. J., Cartwright, A. N. & Prasad, P. N. Carrier multiplication in a PbSe nanocrystal and P3HT/PCBM tandem cell. Appl. Phys. Lett. 92, 191107 (2008).

    Google Scholar 

  72. McGuire, J. A., Joo, J., Pietryga, J. M., Schaller, R. D. & Klimov, V. I. New aspects of carrier multiplication in semiconductor nanocrystals. Acc. Chem. Res. 41, 1810–1819 (2008).

    CAS  Google Scholar 

  73. Nair, G., Geyer, S. M., Chang, L. Y. & Bawendi, M. G. Carrier multiplication yields in PbS and PbSe nanocrystals measured by transient photoluminescence. Phys. Rev. B 78, 125325 (2008).

    Google Scholar 

  74. Pijpers, J. J. H. et al. Assessment of carrier-multiplication efficiency in bulk PbSe and PbS. Nature Phys. 5, 811–814 (2009).

    CAS  Google Scholar 

  75. Nozik, A. J. Making the most of photons. Nature Nanotech. 4, 548–549 (2009).

    CAS  Google Scholar 

  76. Gabor, N. M., Zhong, Z., Bosnick, K., Park, J. & McEuen, P. L. Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes. Science 325, 1367–1371 (2009).

    CAS  Google Scholar 

  77. Lee, J. U., Gipp, P. P. & Heller, C. M. Carbon nanotube p-n junction diodes. Appl. Phys. Lett. 85, 145–147 (2004).

    CAS  Google Scholar 

  78. Hayden, O., Agarwal, R. & Lieber, C. M. Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection. Nature Mater. 5, 352–356 (2006).

    CAS  Google Scholar 

  79. Peumans, P., Yakimov, A. & Forrest, S. R. Small molecular weight organic thin-film photodetectors and solar cells. J. Appl. Phys. 93, 3693–3723 (2003).

    CAS  Google Scholar 

  80. Winder, C. & Sariciftci, N. S. Low bandgap polymers for photon harvesting in bulk heterojunction solar cells. J. Mater. Chem. 14, 1077–1086 (2004).

    CAS  Google Scholar 

  81. Xia, Y. et al. Photocurrent response wavelength up to 1.1 um from photovoltaic cells based on narrow-band-gap conjugated polymer and fullerene derivative. Appl. Phys. Lett. 89, 081106 (2006).

    Google Scholar 

  82. Wang, D. et al. Ultralong single-crystalline Ag2S nanowires: Promising candidates for photoswitches and room-temperature oxygen sensors. Adv. Mater. 20, 2628–2632 (2008).

    CAS  Google Scholar 

  83. Konstantatos, G., Levina, L., Tang, J. & Sargent, E. H. Sensitive solution-processed Bi2S3 nanocrystalline photodetectors. Nano Lett. 8, 4002–4006 (2008).

    CAS  Google Scholar 

  84. Tang, J. et al. Heavy-metal-free solution-processed nanoparticle-based photodetectors: doping of intrinsic vacancies enables engineering of sensitivity and speed. ACS Nano 3, 331–338 (2009).

    CAS  Google Scholar 

  85. Wu, Y., Wadia, C., Ma, W., Sadtler, B. & Alivisatos, A. P. Synthesis and photovoltaic application of copper(1) sulfide nanocrystals. Nano Lett. 8, 2345–2350 (2008).

    Google Scholar 

  86. Gur, I., Fromer, N. A., Geier, M. L. & Alivisatos, A. P. Materials science: Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 310, 462–465 (2005).

    CAS  Google Scholar 

  87. Tang, J. et al. Schottky quantum dot solar cells stable in air under solar illumination. Adv. Mater. 22, 1398–1402 (2010).

    CAS  Google Scholar 

  88. Ozbay, E. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006).

    CAS  Google Scholar 

  89. Maier, S. A. et al. Plasmonics - A route to nanoscale optical devices. Adv. Mater. 13, 1501–1505 (2001).

    CAS  Google Scholar 

  90. Yu, Z., Veronis, G., Fan, S. & Brongersma, M. L. Design of midinfrared photodetectors enhanced by surface plasmons on grating structures. Appl. Phys. Lett. 89, 151116 (2006).

    Google Scholar 

  91. Pillai, S., Catchpole, K. R., Trupke, T. & Green, M. A. Surface plasmon enhanced silicon solar cells. J. Appl. Phys. 101, 093105 (2007).

    Google Scholar 

  92. Tang, L. et al. Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna. Nature Photon. 2, 226–229 (2008).

    CAS  Google Scholar 

  93. Polman, A. Applied physics: Plasmonics applied. Science 322, 868–869 (2008).

    Google Scholar 

  94. White, J. S. et al. Extraordinary optical absorption through subwavelength slits. Opt. Lett. 34, 686–688 (2009).

    CAS  Google Scholar 

  95. Bhat, R. D. R., Panoiu, N. C., Brueck, S. R. J. & Osgood Jr, R. M. Enhancing the signal-to-noise ratio of an infrared photodetector with a circular metal grating. Opt. Express 16, 4588–4596 (2008).

    Google Scholar 

  96. Ishi, T., Fujikata, J., Marita, K., Baba, T. & Ohashi, K. Si nano-photodiode with a surface plasmon antenna. Jpn. J. Appl. Phys. 44, L364–L366 (2005).

    CAS  Google Scholar 

  97. Ferry, V. E., Sweatlock, L. A., Pacifici, D. & Atwater, H. A. Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Lett. 8, 4391–4397 (2008).

    CAS  Google Scholar 

  98. Pala, R. A., White, J., Barnard, E., Liu, J. & Brongersma, M. L. Design of plasmonic thin-film solar cells with broadband absorption enhancements. Adv. Mater. 21, 3504–3509 (2009).

    CAS  Google Scholar 

  99. Cao, L. et al. Engineering light absorption in semiconductor nanowire devices. Nature Mater. 8, 643–647 (2009).

    CAS  Google Scholar 

  100. Stuart, H. R. & Hall, D. G. Island size effects in nanoparticle-enhanced photodetectors. Appl. Phys. Lett. 73, 3815–3817 (1998).

    CAS  Google Scholar 

  101. Maier, S. A. The best of both worlds. Nature Photonics 2, 460–461 (2008).

    CAS  Google Scholar 

  102. Zia, R., Schuller, J. A., Chandran, A. & Brongersma, M. L. Plasmonics: the next chip-scale technology. Mater. Today 9, 20–27 (2006).

    CAS  Google Scholar 

  103. Noginov, M. A. et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009).

    CAS  Google Scholar 

  104. De Vlaminck, I., Van Dorpe, P., Lagae, L. & Borghs, G. Local electrical detection of single nanoparticle plasmon resonance. Nano Lett. 7, 703–706 (2007).

    CAS  Google Scholar 

  105. Neutens, P., Van Dorpe, P., De Vlaminck, I., Lagae, L. & Borghs, G. Electrical detection of confined gap plasmons in metal-insulator-metal waveguides. Nature Photon. 3, 283–286 (2009).

    CAS  Google Scholar 

  106. Shackleford, J. A., Grote, R., Currie, M., Spanier, J. E. & Nabet, B. Integrated plasmonic lens photodetector. Appl. Phys. Lett. 94, 083501 (2009).

    Google Scholar 

  107. Falk, A. L. et al. Near-field electrical detection of optical plasmons and single-plasmon sources. Nature Phys. 5, 475–479 (2009).

    CAS  Google Scholar 

  108. Lee, J. S., Shevchenko, E. V. & Talapin, D. V. Au-PbS core-shell nanocrystals: Plasmonic absorption enhancement and electrical doping via intra-particle charge transfer. J. Am. Chem. Soc. 130, 9673–9675 (2008).

    CAS  Google Scholar 

  109. Bakr, O. M. et al. Silver nanoparticles with broad multiband linear optical absorption. Angew. Chem. Int. Ed. 48, 5921–5926 (2009).

    CAS  Google Scholar 

  110. Nakanishi, H. et al. Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles. Nature 460, 371–375 (2009).

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from King Abdullah University of Science and Technology (award no. KUS-I1-009-21), the Natural Sciences and Engineering Research Council of Canada (NSERC I2I programme), the Ontario Centers of Excellence, the Canada Foundation for Innovation and Ontario Innovation Trust, and the Canada Research Chairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward H. Sargent.

Ethics declarations

Competing interests

Edward Sargent is a significant shareholder in a private company, InVisage Technologies. InVisage is commercializing imaging technologies based on colloidal quantum dots. These technologies were licensed by InVisage from Sargent's group at the University of Toronto. Some research papers describing related technologies are cited and summarized in this Review.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konstantatos, G., Sargent, E. Nanostructured materials for photon detection. Nature Nanotech 5, 391–400 (2010). https://doi.org/10.1038/nnano.2010.78

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.78

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing