Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Biologically templated photocatalytic nanostructures for sustained light-driven water oxidation

Abstract

Over several billion years, cyanobacteria and plants have evolved highly organized photosynthetic systems to shuttle both electronic and chemical species for the efficient oxidation of water1. In a similar manner to reaction centres in natural photosystems, molecular2 and metal oxide3 catalysts have been used to photochemically oxidize water. However, the various approaches involving the molecular design of ligands4, surface modification5 and immobilization6,7 still have limitations in terms of catalytic efficiency and sustainability. Here, we demonstrate a biologically templated nanostructure for visible light-driven water oxidation that uses a genetically engineered M13 virus scaffold to mediate the co-assembly of zinc porphyrins (photosensitizer) and iridium oxide hydrosol clusters (catalyst). Porous polymer microgels are used as an immobilization matrix to improve the structural durability of the assembled nanostructures and to allow the materials to be recycled. Our results suggest that the biotemplated nanoscale assembly of functional components is a promising route to significantly improved photocatalytic water-splitting systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis of IrO2–porphyrin nanowires.
Figure 2: Transmission electron micrographs of porphyrin and IrO2–porphyrin nanowires.
Figure 3: Oxygen evolution from IrO2–porphyrin nanowires.
Figure 4: Regeneration of catalytic materials.

Similar content being viewed by others

References

  1. Ferreira, K. N., Iverson, T. M., Maghlaoui, K., Barber, J. & Iwata, S. Architecture of the photosynthetic oxygen-evolving center. Science 303, 1831–1838 (2004).

    Article  CAS  Google Scholar 

  2. Gersten, S. W., Samuels, G. J. & Meyer, T. J. Catalytic-oxidation of water by an oxo-bridged ruthenium dimer. J. Am. Chem. Soc. 104, 4029–4030 (1982).

    Article  CAS  Google Scholar 

  3. Harriman, A., Pickering, I. J., Thomas, J. M. & Christensen, P. A. Metal-oxides as heterogeneous catalysts for oxygen evolution under photochemical conditions. J. Chem. Soc. Faraday Trans. I 84, 2795–2806 (1988).

    Article  CAS  Google Scholar 

  4. McDaniel, N. D., Coughlin, F. J., Tinker, L. L. & Bernhard, S. Cyclometalated iridium(III) aquo complexes: efficient and tunable catalysts for the homogeneous oxidation of water. J. Am. Chem. Soc. 130, 210–217 (2008).

    Article  CAS  Google Scholar 

  5. Hoertz, P. G., Kim, Y. I., Youngblood, W. J. & Mallouk, T. E. Bidentate dicarboxylate capping groups and photosensitizers control the size of IrO2 nanoparticle catalysts for water oxidation. J. Phys. Chem. B 111, 6845–6856 (2007).

    Article  CAS  Google Scholar 

  6. Jiao, F. & Frei, H. Nanostructured cobalt oxide clusters in mesoporous silica as efficient oxygen-evolving catalysts. Angew. Chem. Int. Ed. 48, 1841–1844 (2009).

    Article  CAS  Google Scholar 

  7. Hara, M., Lean, J. T. & Mallouk, T. E. Photocatalytic oxidation of water by silica-supported tris(4,4′-dialkyl-2,2′-bipyridyl)ruthenium polymeric sensitizers and colloidal iridium oxide. Chem. Mater. 13, 4668–4675 (2001).

    Article  CAS  Google Scholar 

  8. Grätzel, M. Photoelectrochemical cells. Nature 414, 338–344 (2001).

    Article  Google Scholar 

  9. Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).

    Article  CAS  Google Scholar 

  10. Eisenberg, R. & Gray, H. B. Preface on making oxygen. Inorg. Chem. 47, 1697–1699 (2008).

    Article  CAS  Google Scholar 

  11. Kanan, M. W. & Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072–1075 (2008).

    Article  CAS  Google Scholar 

  12. Turner, J. Oxygen catalysis: the other half of the equation. Nature Mater. 7, 770–771 (2008).

    Article  CAS  Google Scholar 

  13. Meyer, T. J. Catalysis—the art of splitting water. Nature 451, 778–779 (2008).

    Article  CAS  Google Scholar 

  14. Tagore, R., Crabtree, R. H. & Brudvig, G. W. Oxygen evolution catalysis by a dimanganese complex and its relation to photosynthetic water oxidation. Inorg. Chem. 47, 1815–1823 (2008).

    Article  CAS  Google Scholar 

  15. Grätzel, M. Light-induced charge separation and water cleavage in microheterogeneous aqueous systems. Faraday Discuss. 70, 359–374 (1980).

    Article  Google Scholar 

  16. Harriman, A., Nahor, G. S., Mosseri, S. & Neta, P. Iridium oxide hydrosols as catalysts for the decay of zinc porphyrin radical cations in water. J. Chem. Soc. Faraday Trans. I 84, 2821–2829 (1988).

    Article  CAS  Google Scholar 

  17. Nahor, G. S., Mosseri, S., Neta, P. & Harriman, A. Polyelectrolyte-stabilized metal-oxide hydrosols as catalysts for the photooxidation of water by zinc porphyrins. J. Phys. Chem. 92, 4499–4504 (1988).

    Article  CAS  Google Scholar 

  18. Gray, H. B. & Winkler, J. R. Long-range electron transfer. Proc. Natl Acad. Sci. USA 102, 3534–3539 (2005).

    Article  CAS  Google Scholar 

  19. Nam, K. T. et al. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312, 885–888 (2006).

    Article  CAS  Google Scholar 

  20. Mao, C. B. et al. Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science 303, 213–217 (2004).

    Article  CAS  Google Scholar 

  21. Lee, Y. J. et al. Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes. Science 324, 1051–1055 (2009).

    CAS  Google Scholar 

  22. Miller, R. A., Presley, A. D. & Francis, M. B. Self-assembling light-harvesting systems from synthetically modified tobacco mosaic virus coat proteins. J. Am. Chem. Soc. 129, 3104–3109 (2007).

    Article  CAS  Google Scholar 

  23. Lee, S. K., Yun, D. S. & Belcher, A. M. Cobalt ion mediated self-assembly of genetically engineered bacteriophage for biomimetic Co–Pt hybrid material. Biomacromolecules 7, 14–17 (2006).

    Article  CAS  Google Scholar 

  24. Glucksman, M. J., Bhattacharjee, S. & Makowski, L. Three-dimensional structure of a cloning vector. X-ray diffraction studies of filamentous bacteriophage M13 at 7 Å resolution. J. Mol. Biol. 226, 455–470 (1992).

    Article  CAS  Google Scholar 

  25. Fudickar, W. et al. Fluorescence quenching and size selective heterodimerization of a porphyrin adsorbed to gold and embedded in rigid membrane gaps. J. Am. Chem. Soc. 121, 9539–9545 (1999).

    Article  CAS  Google Scholar 

  26. Brixner, T. et al. Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature 434, 625–628 (2005).

    Article  CAS  Google Scholar 

  27. Nam, Y. S. et al. Virus-templated assembly of porphyrins into light-harvesting nanoantennae. J. Am. Chem. Soc. 132, 1462–1463 (2010).

    Article  CAS  Google Scholar 

  28. Morris, N. D., Suzuki, M. & Mallouk, T. E. Kinetics of electron transfer and oxygen evolution in the reaction of [Ru(bpy)3]3+ with colloidal iridium oxide. J. Phys. Chem. A 108, 9115–9119 (2004).

    Article  CAS  Google Scholar 

  29. Kim, J. W., Utada, A. S., Fernandez-Nieves, A., Hu, Z. B. & Weitz, D. A. Fabrication of monodisperse gel shells and functional microgels in microfluidic devices. Angew. Chem. Int. Ed. 46, 1819–1822 (2007).

    Article  CAS  Google Scholar 

  30. Soja, G. R. & Watson, D. F. TiO2-catalyzed photodegradation of porphyrins: mechanistic studies and application in monolayer photolithography. Langmuir 25, 5398–5403 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Y.S.N. would like to thank Y. Zhang for assistance with the scanning transmission electron microscopy, E.L. Shaw for help with the X-ray photoelectron spectroscopy, and K. Choi for experimental help and manuscript preparation. A.P.M thanks S. Cui for experimental help. This work was supported from Eni, S.p.A. (Italy) through the MIT Energy Initiative Program. We acknowledge the MIT Center for Materials Science and Engineering for use of microscopy and materials analysis facilities supported under grant no. DMR-9808941.

Author information

Authors and Affiliations

Authors

Contributions

Y.S.N. designed the study, prepared samples, collected data, performed oxygen evolution analyses, analysed data and wrote the manuscript. A.P.M. helped design experiments and analyse data, built the oxygen analysis system and edited the manuscript. D.L. fabricated the virus microgels, optimized the fabrication processes, and edited the manuscript. J.W.K. suggested, designed and fabricated the virus microgels. D.S.Y. carried out the biopanning experiment. H.P. performed oxygen evolution analyses, scopoletin assays and ICP-AES analyses. T.S.P. performed biological experiments and edited the manuscript. D.A.W. supervised the microgel research and edited the manuscript. A.M.B. designed the study, supervised the overall work and edited the manuscript.

Corresponding author

Correspondence to Angela M. Belcher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1901 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nam, Y., Magyar, A., Lee, D. et al. Biologically templated photocatalytic nanostructures for sustained light-driven water oxidation. Nature Nanotech 5, 340–344 (2010). https://doi.org/10.1038/nnano.2010.57

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.57

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing