Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Facile synthesis of high-quality graphene nanoribbons

A Corrigendum to this article was published on 12 January 2011

This article has been updated


Graphene nanoribbons have attracted attention because of their novel electronic and spin transport properties1,2,3,4,5,6, and also because nanoribbons less than 10 nm wide have a bandgap that can be used to make field-effect transistors1,2,3. However, producing nanoribbons of very high quality, or in high volumes, remains a challenge1,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18. Here, we show that pristine few-layer nanoribbons can be produced by unzipping mildly gas-phase oxidized multiwalled carbon nanotubes using mechanical sonication in an organic solvent. The nanoribbons are of very high quality, with smooth edges (as seen by high-resolution transmission electron microscopy), low ratios of disorder to graphitic Raman bands, and the highest electrical conductance and mobility reported so far (up to 5e2/h and 1,500 cm2 V−1 s−1 for ribbons 10–20 nm in width). Furthermore, at low temperatures, the nanoribbons show phase-coherent transport and Fabry–Perot interference, suggesting minimal defects and edge roughness. The yield of nanoribbons is 2% of the starting raw nanotube soot material, significantly higher than previous methods capable of producing high-quality narrow nanoribbons1. The relatively high-yield synthesis of pristine graphene nanoribbons will make these materials easily accessible for a wide range of fundamental and practical applications.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Unzipping of nanotubes using a new two-step method in gas and liquid phases.
Figure 2: Microscopy imaging of nanoribbons.
Figure 3: Raman spectroscopy of nanoribbons.
Figure 4: Electrical transport measurements of nanoribbons.

Change history

  • 12 January 2011

    In the version of this Letter originally published, the symbols for 'Lithography (ref. 27)' and 'Sonochemical (ref. 1)' in the legend of Figure 4d were the wrong way round. This error has now been corrected in the HTML and PDF versions of the text.


  1. Li, X. L. et al. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008).

    Article  CAS  Google Scholar 

  2. Wang, X. R. et al. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 100, 206803 (2008).

    Article  Google Scholar 

  3. Wang, X. R. et al. N-doping of graphene through electrothermal reactions with ammonia. Science 324, 768–771 (2009).

    Article  CAS  Google Scholar 

  4. Chen, Z. H., Lin, Y. M., Rooks, M. J. & Avouris, P. Graphene nano-ribbon electronics. Physica E 40, 228–232 (2007).

    Article  CAS  Google Scholar 

  5. Han, M. Y., Ozyilmaz, B., Zhang, Y. B. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).

    Article  Google Scholar 

  6. Cresti, A. et al. Charge transport in disordered graphene-based low dimensional materials. Nano Res. 1, 361–394 (2008).

    Article  CAS  Google Scholar 

  7. Tapaszto, L., Dobrik, G., Lambin, P. & Biro, L. P. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nature Nanotechnol. 3, 397–401 (2008).

    Article  CAS  Google Scholar 

  8. Datta, S. S., Strachan, D. R., Khamis, S. M. & Johnson, A. T. C. Crystallographic etching of few-layer graphene. Nano Lett. 8, 1912–1915 (2008).

    Article  CAS  Google Scholar 

  9. Ci, L. J. et al. Controlled nanocutting of graphene. Nano Res. 1, 116–122 (2008).

    Article  CAS  Google Scholar 

  10. Campos, L. C., Manfrinato, V. R., Sanchez-Yamagishi, J. D., Kong, J. & Jarillo-Herrero, P. Anisotropic etching and nanoribbon formation in single-layer graphene. Nano Lett. 9, 2600–2604 (2009).

    Article  CAS  Google Scholar 

  11. Campos-Delgado, J. et al. Bulk production of a new form of sp2 carbon: crystalline graphene nanoribbons. Nano Lett. 8, 2773–2778 (2008).

    Article  CAS  Google Scholar 

  12. Wu, Z. S. et al. Efficient synthesis of graphene nanoribbons sonochemically cut from graphene sheets. Nano Res. 3, 16–22 (2010).

    Article  CAS  Google Scholar 

  13. Jiao, L. Y., Zhang, L., Wang, X. R., Diankov, G. & Dai, H. J. Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877–880 (2009).

    Article  CAS  Google Scholar 

  14. Kosynkin, D. V. et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009).

    Article  CAS  Google Scholar 

  15. Zhang, Z. X., Sun, Z. Z., Yao, J., Kosynkin, D. V. & Tour, J. M. Transforming carbon nanotube devices into nanoribbon devices. J. Am. Chem. Soc. 131, 13460–13463 (2009).

    Article  CAS  Google Scholar 

  16. Cano-Marquez, A. G. et al. Ex-MWNTs: graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Lett. 9, 1527–1533 (2009).

    Article  CAS  Google Scholar 

  17. Elías, A. L. et al. Longitudinal cutting of pure and doped carbon nanotubes to form graphitic nanoribbons using metal clusters as nanoscalpels. Nano Lett. 10, 366–372 (2010).

    Article  Google Scholar 

  18. Kim, W. S. et al. Fabrication of graphene layers from multiwalled carbon nanotubes using high d.c. pulse. Appl. Phys. Lett. 95, 083103 (2009).

    Article  Google Scholar 

  19. Colbert, D. T. et al. Growth and sintering of fullerene nanotubes. Science 266, 1218–1222 (1994).

    Article  CAS  Google Scholar 

  20. Barinov, A., Gregoratti, L., Dudin, P., La Rosa, S. & Kiskinova, M. Imaging and spectroscopy of multiwalled carbon nanotubes during oxidation: defects and oxygen bonding. Adv. Mater. 21, 1916–1920 (2009).

    Article  CAS  Google Scholar 

  21. Stevens, F., Kolodny, L. A. & Beebe, T. P. Kinetics of graphite oxidation: monolayer and multilayer etch pits in HOPG studied by STM. J. Phys. Chem. B 102, 10799–10804 (1998).

    Article  CAS  Google Scholar 

  22. Lee, S. M. et al. Defected-induced oxidation of graphite. Phys. Rev. Lett. 82, 217–220 (1999).

    Article  CAS  Google Scholar 

  23. Chen, R. J., Zhang, Y. G., Wang, D. W. & Dai, H. J. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 123, 3838–3839 (2001).

    Article  CAS  Google Scholar 

  24. Dresselhaus, M. S., Dresselhaus, G., Saito, R. & Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 409, 47–99 (2005).

    Article  Google Scholar 

  25. Ni, Z. H., Wang, Y. Y., Yu, T. & Shen, Z. X. Raman spectroscopy and imaging of graphene. Nano Res. 1, 273–291 (2008).

    Article  CAS  Google Scholar 

  26. Gupta, A. K, Russin, T. J., Gutiérrez, H. R. & Eklund, P. C. Probing graphene edges via Raman scattering. ACS Nano 3, 45–52 (2009).

    Article  CAS  Google Scholar 

  27. Lin, Y. M. & Avouris, P. Strong suppression of electrical noise in bilayer graphene nanodevices. Nano Lett. 8, 2119–2125 (2008).

    Article  CAS  Google Scholar 

  28. Han, M. Y., Brant, J. C. & Kim, P. Electron transport in disordered graphene nanoribbons. Phys. Rev. Lett. 104, 056801 (2010).

    Article  Google Scholar 

  29. Liang, W. et al. Fabry–Perot interference in a nanotube electronwaveguide. Nature 411, 665–669 (2001).

    Article  CAS  Google Scholar 

  30. Todd, K., Chou, H. T., Amasha, S. & Goldhaber-Gordon, D. Quantum dot behavior in graphene nanoconstrictions. Nano Lett 9, 416–421 (2009).

    Article  CAS  Google Scholar 

Download references


This work was supported by Microelectronics Advanced Research Corporation—Materials, Structures, and Devices Center (MARCO-MSD), Intel and the US Office of Naval Research (ONR).

Author information

Authors and Affiliations



H.D. and L.J. conceived and designed the experiments. L.J., X.W., G.D. and H.W. performed the experiments and analysed the data. H.D. and L.J. co-wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Hongjie Dai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1688 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jiao, L., Wang, X., Diankov, G. et al. Facile synthesis of high-quality graphene nanoribbons. Nature Nanotech 5, 321–325 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research