Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cold welding of ultrathin gold nanowires

Abstract

The welding of metals at the nanoscale is likely to have an important role in the bottom-up fabrication of electrical and mechanical nanodevices. Existing welding techniques use local heating, requiring precise control of the heating mechanism and introducing the possibility of damage. The welding of metals without heating (or cold welding) has been demonstrated, but only at macroscopic length scales and under large applied pressures. Here, we demonstrate that single-crystalline gold nanowires with diameters between 3 and 10 nm can be cold-welded together within seconds by mechanical contact alone, and under relatively low applied pressures. High-resolution transmission electron microscopy and in situ measurements reveal that the welds are nearly perfect, with the same crystal orientation, strength and electrical conductivity as the rest of the nanowire. The high quality of the welds is attributed to the nanoscale sample dimensions, oriented-attachment mechanisms and mechanically assisted fast surface-atom diffusion. Welds are also demonstrated between gold and silver, and silver and silver, indicating that the technique may be generally applicable.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two types of ultrathin gold nanowire samples used for cold-welding experiments.
Figure 2: Head-to-head and side-to-side cold-welding geometries.
Figure 3: Head-to-head welding of two gold nanorods.
Figure 4: Side-to-side welding of two gold nanowires.
Figure 5: In situ tensile strength measurements of the nanowelds.
Figure 6: In situ electrical measurements of the nanowelds.

Similar content being viewed by others

References

  1. Opening remarks. J. Am. Welding Soc. 1, 3 (1919).

  2. Freitas, R. A. & Gilbreath, W. P. (eds) Advanced Automation for Space Missions: Proceedings of the 1980 NASA/ASEE Summer Study, Appendix 4C.1. (NASA, 1980).

    Google Scholar 

  3. Ferguson, G. S., Chaudhury, M. K., Sigal, G. B. & Whitesides, G. M. Contact adhesion of thin gold films on elastomeric supports: cold welding under ambient conditions. Science 253, 776–778 (1991).

    Article  CAS  Google Scholar 

  4. Kim, C., Burrows, P. E. & Forrest, S. R. Micropatterning of organic electronic devices by cold-welding. Science 288, 831–833 (2000).

    Article  CAS  Google Scholar 

  5. Jin, C., Suenaga, K. & Iijima, S. Plumbing carbon nanotubes. Nature Nanotech. 3, 17–21 (2008).

    Article  CAS  Google Scholar 

  6. Wang, M., Wang, J., Chen, Q. & Peng, L. M. Fabrication and electrical and mechanical properties of carbon nanotube interconnections. Adv. Funct. Mater. 15, 1825–1831 (2005).

    Article  CAS  Google Scholar 

  7. Hirayama, H., Kawamoto, Y., Hayashi, H. & Takayanagi, K. Nanospot welding of carbon nanotubes. Appl. Phys. Lett. 79, 1169–1171 (2001).

    Article  CAS  Google Scholar 

  8. Madsen, D. N. et al. Soldering of nanotubes onto microelectrodes. Nano Lett. 3, 47–49 (2003).

    Article  CAS  Google Scholar 

  9. Wu, Y. & Yang, P. Melting and welding semiconductor nanowires in nanotubes. Adv. Mater. 13, 520–523 (2001).

    Article  CAS  Google Scholar 

  10. Dong, L., Tao, X., Zhang, L., Zhang, X. & Nelson, B. J. Nanorobotic spot welding: controlled metal deposition with attogram precision from copper-filled carbon nanotubes. Nano Lett. 7, 58–63 (2007).

    Article  CAS  Google Scholar 

  11. Misra, A. & Daraio, C. Sharp carbon-nanotube tips and carbon-nanotube soldering irons. Adv. Mater. 20, 1–4 (2008).

    Article  Google Scholar 

  12. Rodríguez-Manzo, J. A. et al. Heterojunctions between metals and carbon nanotubes as ultimate nanocontacts. Proc. Natl Acad. Sci. USA 106, 4591–4595 (2009).

    Article  Google Scholar 

  13. Xu, S. et al. Nanometer-scale modification and welding of silicon and metallic nanowires with a high-intensity electron beam. Small 1, 1221–1229 (2005).

    Article  CAS  Google Scholar 

  14. Tohmyoh, H., Imaizumi, T., Hayashi, H. & Saka, M. Welding of Pt nanowires by Joule heating. Scripta Mater. 57, 953–956 (2007).

    Article  CAS  Google Scholar 

  15. van Huis, M. A. et al. Low-temperature nanocrystal unification through rotations and relaxations probed by in situ transmission electron microscopy. Nano Lett. 8, 3959–3963 (2008).

    Article  CAS  Google Scholar 

  16. Kizuka, T., Yamada, K., Deguchi, S., Naruse, M. & Tanaka, N. Time-resolved high-resolution electron microscopy of atomic scale solid-state direct bonding of gold tips. J. Electron Microsc. 46, 151–160 (1997).

    Article  CAS  Google Scholar 

  17. Tohmyoh, H. A governing parameter for the melting phenomenon at nanocontacts by Joule heating and its application to joining together two thin metallic wires. J. Appl. Phys. 105, 014907 (2009).

    Article  Google Scholar 

  18. Kim, S. J. & Jang, D. J. Laser-induced nanowelding of gold nanoparticles. Appl. Phys. Lett. 86, 033112 (2005).

    Article  Google Scholar 

  19. Moskalenko, A. V., Burbridge, D. J., Viau, G. & Gordeev, S. N. Electron-beam-induced welding of 3D nano-objects from beneath. Nanotechnology 18, 025304 (2007).

    Article  Google Scholar 

  20. Peng, Y., Cullis, T. & Inkson, B. Bottom-up nanoconstruction by the welding of individual metallic nanoobjects using nanoscale solder. Nano Lett. 9, 91–96 (2009).

    Article  CAS  Google Scholar 

  21. Gu, Z., Ye, H., Smirnova, D., Small, D. & Gracias, D. H. Reflow and electrical characteristics of nanoscale solder. Small 2, 225–229 (2006).

    Article  CAS  Google Scholar 

  22. Lu, W. & Lieber, C. M. Nanoelectronics from the bottom up. Nature Mater. 6, 841–850 (2007).

    Article  CAS  Google Scholar 

  23. Ji, C. & Searson, P. C. Synthesis and characterization of nanoporous gold nanowires. J. Phys. Chem. B 107, 4494–4499 (2003).

    Article  CAS  Google Scholar 

  24. Wang, C., Hu, Y., Lieber, C. M. & Sun, S. Ultrathin Au nanowires and their transport properties. J. Am. Chem. Soc. 130, 8902–8903 (2008).

    Article  CAS  Google Scholar 

  25. Howatson, A. M., Lund, P. G. & Todd, J. D. Engineering Tables and Data 41, 2nd edn (Chapman and Hall, 1991).

    Google Scholar 

  26. Gall, K., Diao, J., Agrait, N. & Dunn, M. L. The strength of gold nanowires. Nano. Lett. 4, 2431–2436 (2004).

    Article  CAS  Google Scholar 

  27. Wu, B., Heidelberg, A. & Boland, J. J. Mechanical properties of ultrahigh-strength gold nanowires. Nature Mater. 4, 525–529 (2005).

    Article  CAS  Google Scholar 

  28. Ramsperger, U., Uchihashi, T. & Nejoh, H. Fabrication and lateral electronic transport measurements of gold nanowires. Appl. Phys. Lett. 78, 85–87 (2001).

    Article  CAS  Google Scholar 

  29. Calleja, M., Tello, M., Anguita, J., Garcia, F. & Garcia, R. Fabrication of gold nanowires on insulating substrates by field-induced mass transport. Appl. Phys. Lett. 79, 2471–2473 (2001).

    Article  CAS  Google Scholar 

  30. Song, J. H., Wu, Y., Messer, B., Kind, H. & Yang, P. Metal nanowire formation using Mo3Se3 as reducing and sacrificing templates. J. Am. Chem. Soc. 123, 10397–10398 (2001).

    Article  CAS  Google Scholar 

  31. José-Yacaman, M. et al. Surface diffusion and coalescence of mobile metal nanoparticles. J. Phys. Chem. B 109, 9703–9711 (2005).

    Article  Google Scholar 

  32. Rez, P. & Glaisher, R. W. Measurement of energy deposition in transmission electron microscopy. Ultramicroscopy 35, 65–69 (1991).

    Article  Google Scholar 

  33. Kizuka, T. Atomic process of point contact in gold studied by time-resolved high-resolution transmission electron microscopy. Phys. Rev. Lett. 81, 4448–4451 (1998).

    Article  CAS  Google Scholar 

  34. Sanders, D. E. & DePristo, A. E. Predicted diffusion rates on fcc (001) metal surfaces for adsorbate/substrate combinations of Ni, Cu, Rh, Pd, Ag, Pt, Au. Surf. Sci. 260, 116–128 (1992).

    Article  CAS  Google Scholar 

  35. Cho, K. S., Talapin, D. V., Gaschler, W. & Murray, C. B. Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J. Am. Chem. Soc. 127, 7140–7147 (2005).

    Article  CAS  Google Scholar 

  36. Zhong, Z., Wang, D., Cui, Y., Bockrath, M. W. & Lieber, C. M. Nanowire crossbar arrays as address decoders for integrated nanosystems. Science 302, 1377–1379 (2003).

    Article  CAS  Google Scholar 

  37. Whang, D., Jin, S., Wu, Y. & Lieber, C. M. Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett. 3, 1255–1259 (2003).

    Article  CAS  Google Scholar 

  38. Huo, F. et al. Polymer pen lithography. Science 321, 1658–1660 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Y.L. and J.L. acknowledge the financial support provided by the Air Force Office of Sponsored Research (AFOSR) YIP award FA9550-09-1-0084 and by National Science Foundation (NSF) grant ECCS-0702766. This work was performed, in part, at the Center for Integrated Nanotechnologies, a US Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the US Department of Energy under contract no. DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Contributions

Y.L., J.H. and J.L. conceived and designed the experiments. Y.L. performed the experiments. Y.L., J.H. and J.L. analysed the data. C.W. and S.S. supplied materials. Y.L. and J.L. composed the manuscript. All authors discussed the results and edited the manuscript.

Corresponding author

Correspondence to Jun Lou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 621 kb)

Supplementary information

Supplementary information (MOV 5405 kb)

Supplementary information

Supplementary information (MOV 15115 kb)

Supplementary information

Supplementary information (MOV 14273 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Y., Huang, J., Wang, C. et al. Cold welding of ultrathin gold nanowires. Nature Nanotech 5, 218–224 (2010). https://doi.org/10.1038/nnano.2010.4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing