Self-powered nanowire devices

Abstract

The harvesting of mechanical energy from ambient sources could power electrical devices without the need for batteries. However, although the efficiency and durability of harvesting materials such as piezoelectric nanowires have steadily improved, the voltage and power produced by a single nanowire are insufficient for real devices. The integration of large numbers of nanowire energy harvesters into a single power source is therefore necessary, requiring alignment of the nanowires as well as synchronization of their charging and discharging processes. Here, we demonstrate the vertical and lateral integration of ZnO nanowires into arrays that are capable of producing sufficient power to operate real devices. A lateral integration of 700 rows of ZnO nanowires produces a peak voltage of 1.26 V at a low strain of 0.19%, which is potentially sufficient to recharge an AA battery. In a separate device, a vertical integration of three layers of ZnO nanowire arrays produces a peak power density of 2.7 mW cm−3. We use the vertically integrated nanogenerator to power a nanowire pH sensor and a nanowire UV sensor, thus demonstrating a self-powered system composed entirely of nanowires.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Steps for fabrication of VING.
Figure 2: Linear superposition and output voltage versus stress characteristics of VING.
Figure 3: Design of LING array.
Figure 4: Fabrication process and structural characterization of LING.
Figure 5: Performance of LING.
Figure 6: Integration of a VING (4 mm2 in size) with nanosensors to demonstrate the solely nanowire-based ‘self-powered’ nanosystem.

References

  1. 1

    Wang, Z. L. & Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006).

    CAS  Article  Google Scholar 

  2. 2

    Tian, B. Z. et al. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, 885–890 (2007).

    CAS  Article  Google Scholar 

  3. 3

    Wang, Z. L. Self-powered nanotech–nanosize machines need still tinier power plants. Sci. Am. 298, 82–87 (2008).

    Article  Google Scholar 

  4. 4

    Pan, C. F. et al. Nanowire-based high performance ‘micro fuel cell’: one nanowire, one fuel cell. Adv. Mater. 20, 1644–1648 (2008).

    CAS  Article  Google Scholar 

  5. 5

    Dorfman, A., Kumar, N. & Hahm, J. I. Highly sensitive biomolecular fluorescence detection using nanoscale ZnO platforms. Langmuir 22, 4890–4895 (2006).

    CAS  Article  Google Scholar 

  6. 6

    Zang, J. F. et al. Tailoring zinc oxide nanowires for high performance amperometric glucose sensor. Electroanalysis 19, 1008–1014 (2007).

    CAS  Article  Google Scholar 

  7. 7

    Fan, Z. Y., Wang, D. W., Chang, P. C., Tseng, W. Y. & Lu, J. G. ZnO nanowire field-effect transistor and oxygen sensing property. Appl. Phys. Lett. 85, 5923–5925 (2004).

    CAS  Article  Google Scholar 

  8. 8

    Li, Q. H., Liang, Y. X., Wan, Q. & Wang, T. H. Oxygen sensing characteristics of individual ZnO nanowire transistors. Appl. Phys. Lett. 85, 6389–6391 (2004).

    CAS  Article  Google Scholar 

  9. 9

    Wang, X. D., Song, J. H., Liu, J. & Wang, Z. L. Direct-current nanogenerator driven by ultrasonic waves. Science 316, 102–105 (2007).

    CAS  Article  Google Scholar 

  10. 10

    Qin, Y., Wang, X. D. & Wang, Z. L. Microfibre–nanowire hybrid structure for energy scavenging. Nature 451, 809–813 (2008).

    CAS  Article  Google Scholar 

  11. 11

    Liu, J., Fei, P., Zhou, J., Tummala, R. & Wang, Z. L. Toward high output-power nanogenerator. Appl. Phys. Lett. 92, 173105 (2008).

    Article  Google Scholar 

  12. 12

    Xu, S., Wei, Y. G., Liu, J., Yang, R. & Wang, Z. L. Integrated multilayer nanogenerator fabricated using paired nanotip-to-nanowire brushes. Nano Lett. 8, 4027–4032 (2008).

    CAS  Article  Google Scholar 

  13. 13

    Xu, S. et al. Optimizing and improving the growth quality of ZnO nanowire arrays guided by statistical design of experiments. ACS Nano 3, 1803–1812 (2009).

    CAS  Article  Google Scholar 

  14. 14

    Lee, S. H. et al. Ordered arrays of ZnO nanorods grown on periodically polarity-inverted surfaces. Nano Lett. 8, 2419–2422 (2008).

    CAS  Article  Google Scholar 

  15. 15

    Jasinski, J., Zhang, D., Parra, J., Katkanant, V. & Leppert, V. J. Application of channeling-enhanced electron energy-loss spectroscopy for polarity determination in ZnO nanopillars. Appl. Phys. Lett. 92, 093104 (2008).

    Article  Google Scholar 

  16. 16

    Bae, S. Y. et al. Synthesis of gallium nitride nanowires with uniform [001] growth direction. J. Cryst. Growth 258, 296–301 (2003).

    CAS  Article  Google Scholar 

  17. 17

    Liu, C. et al. Vapor–solid growth and characterization of aluminum nitride nanocones. J. Am. Chem. Soc. 127, 1318–1322 (2005).

    CAS  Article  Google Scholar 

  18. 18

    Yang, R. S., Qin, Y., Dai, L. M. & Wang, Z. L. Power generation with laterally packaged piezoelectric fine wires. Nature Nanotech. 4, 34–39 (2009).

    CAS  Article  Google Scholar 

  19. 19

    Wang, X. D., Liu, J., Song, J. H. & Wang, Z. L. Integrated nanogenerators in biofluid. Nano Lett. 7, 2475–2479 (2007).

    CAS  Article  Google Scholar 

  20. 20

    Yang, R. S., Qin, Y., Li, C., Dai, L. M. & Wang, Z. L. Characteristics of output voltage and current of integrated nanogenerators. Appl. Phys. Lett. 94, 022905 (2009).

    Article  Google Scholar 

  21. 21

    Shen, D. N. et al. Micromachined PZT cantilever based on SOI structure for low frequency vibration energy harvesting. Sens. Actuat. A 154, 103–108 (2009).

    CAS  Article  Google Scholar 

  22. 22

    Roundy, S., Wright, P. K. & Rabaey, J. A study of low level vibrations as a power source for wireless sensor nodes. Comput. Commun. 26, 1131–1144 (2003).

    Article  Google Scholar 

  23. 23

    Gao, Y. & Wang, Z. L. Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. Nano Lett. 7, 2499–2505 (2007).

    CAS  Article  Google Scholar 

  24. 24

    Yang, R. S., Qin, Y., Li, C., Zhu, G. & Wang, Z. L. Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator. Nano Lett. 9, 1201–1205 (2009).

    CAS  Article  Google Scholar 

  25. 25

    Choi, M. Y. et al. Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods. Adv. Mater. 21, 2185–2189 (2009).

    CAS  Article  Google Scholar 

  26. 26

    Qin, Y., Yang, R. S. & Wang, Z. L. Growth of horizonatal ZnO nanowire arrays on any substrate. J. Phys. Chem. C 112, 18734–18736 (2008).

    CAS  Article  Google Scholar 

  27. 27

    Song, J. H., Zhou, J. & Wang, Z. L. Piezoelectric and semiconducting coupled power generating process of a single ZnO belt/wire. A technology for harvesting electricity from the environment. Nano Lett. 6, 1656–1662 (2006).

    CAS  Article  Google Scholar 

  28. 28

    Agrawal, R., Peng, B. & Espinosa, H. D. Experimental–computational investigation of ZnO nanowires strength and fracture. Nano Lett. 9, 4177–4183 (2009).

    CAS  Article  Google Scholar 

  29. 29

    Kang, B. S. et al. pH measurements with single ZnO nanorods integrated with a microchannel. Appl. Phys. Lett. 86, 112105 (2005).

    Article  Google Scholar 

  30. 30

    Zhou, J. et al. Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization. Appl. Phys. Lett. 94, 191103 (2009).

    Article  Google Scholar 

  31. 31

    Li, Z. et al. Cellular level biocompatibility and biosafety of ZnO nanowires. J. Phys. Chem. C 112, 20114–20117 (2008).

    CAS  Article  Google Scholar 

  32. 32

    Gao, Z. Y., Ding, Y., Lin, S. S., Hao, Y. & Wang, Z. L. Dynamic fatigue studies of ZnO nanowires by in situ transmission electron microscopy. Phys. Status Solidi 3, 260–262 (2009).

    CAS  Google Scholar 

  33. 33

    Xu, S., Lao, C. S., Weintraub, B. & Wang, Z. L. Density-controlled growth of aligned ZnO nanowire arrays by seedless chemical approach on smooth surfaces. J. Mater. Res. 23, 2072–2077 (2008).

    CAS  Article  Google Scholar 

  34. 34

    Pan, Z. W., Dai, Z. R. & Wang, Z. L. Nanobelts of semiconducting oxides. Science 291, 1947–1949 (2001).

    CAS  Article  Google Scholar 

  35. 35

    Zang, J. F. et al. Tailoring zinc oxide nanowires for high performance amperometric glucose sensor. Electroanalysis 19, 1008–1014 (2007).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Research was supported by National Science Foundation (DMS 0706436, CMMI 0403671, ENG/CMMI 112024), the Defense Advanced Research Projects Agency (DARPA) (Army/AMCOM/REDSTONE AR, W31P4Q-08-1-0009) and the Department of Energy (Basic Energy Science) (DE-FG02-07ER46394), DARPA/ARO W911NF-08-1-0249. The authors would like to thank P. Fei, J. Zhou and T.-Y. Wei for technical assistance.

Author information

Affiliations

Authors

Contributions

Z.L.W., S.X., Y.Q. and C.X. designed the experiments. S.X., Y.Q., C.X. Y.G.W. and R.S.Y. performed the experiments. Z.L.W., S.X., Y.Q. and C.X. analysed the data and wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Zhong Lin Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1653 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xu, S., Qin, Y., Xu, C. et al. Self-powered nanowire devices. Nature Nanotech 5, 366–373 (2010). https://doi.org/10.1038/nnano.2010.46

Download citation

Further reading