Identifying single nucleotides by tunnelling current

Abstract

A major goal in medical research is to develop a DNA sequencing technique that is capable of reading an entire human genome at low cost1,2,3,4. Recently, it was proposed that DNA sequencing could be performed by measuring the electron transport properties of the individual nucleotides in a DNA molecule5. Here, we report electrical detection of single nucleotides using two configurable nanoelectrodes and show that electron transport through single nucleotides occurs by tunnelling. We also demonstrate statistical identification of the nucleotides based on their electrical conductivity, thereby providing an experimental basis for a DNA sequencing technology based on measurements of electron transport.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Conceptual illustrations of single-nucleotide conductance measurements for DNA sequencing.
Figure 2: It curves obtained for GMP at Vb = 0.75 V with electrode gap size adjusted to 1.0 ± 0.05 nm.
Figure 3: Ip measurements for GMP conducted with Vb varying from 0.25 to 0.75 V, using a pair of nanoelectrodes with electrode gap size adjusted to 1.0 ± 0.05 nm.
Figure 4: Statistical identification of single nucleotides.

References

  1. 1

    Collins, F. S., Green, A. E., Guttmacher, A. E. & Guyer, M. S. A vision for the future of genomics research. Nature 422, 835–847 (2003).

    CAS  Article  Google Scholar 

  2. 2

    Schloss, J. A. How to get genomes at one ten-thousandth the cost. Nature Biotechnol. 26, 1113–1115 (2008).

    CAS  Article  Google Scholar 

  3. 3

    Dekker, C. Solid-state nanopores. Nature Nanotech. 2, 209–215 (2007).

    CAS  Article  Google Scholar 

  4. 4

    Branton, D. et al. The potential and challenges of nanopore sequencing. Nature Biotechnol. 26, 1146–1153 (2008).

    CAS  Article  Google Scholar 

  5. 5

    Zwolak, M. & Di Ventra, M. Colloquim: physical approaches to DNA sequencing and detection. Rev. Mod. Phys. 80, 141–165 (2008).

    Article  Google Scholar 

  6. 6

    Clarke, J. et al. Continuous base identification for single-molecule nanopore DNA sequencing. Nature Nanotech. 4, 265–270 (2009).

    CAS  Article  Google Scholar 

  7. 7

    Stoddart, D., Heron, A. J., Mikhailova, E., Maglia, G. & Bayley, H. Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore. Proc. Natl Acad. Sci. USA 106, 7702–7707 (2009).

    CAS  Article  Google Scholar 

  8. 8

    Fologea, D. et al. Detecting single stranded DNA with a solid state nanopore. Nano Lett. 5, 1905–1909 (2005).

    CAS  Article  Google Scholar 

  9. 9

    Keyser, U. F. et al. Direct force measurements on DNA in a solid-state nanopore. Nature Phys. 2, 473–477 (2006).

    CAS  Article  Google Scholar 

  10. 10

    Gershow, M. & Golovchenko, J. A. Recapturing and trapping single molecules with a solid-state nanopore. Nature Nanotech. 2, 775–779 (2007).

    CAS  Article  Google Scholar 

  11. 11

    van Dorp, S., Keyser, U. F., Dekker, N. H., Dekker, C. & Lemay, S. G. Origin of the electrophoretic force on DNA in solid-state nanopores. Nature Phys. 5, 347–351 (2009).

    CAS  Article  Google Scholar 

  12. 12

    Lagerqvist, J., Zwolak, M. & Di Ventra, M. Fast DNA sequencing via transverse electronic transport. Nano Lett. 6, 779–782 (2006).

    CAS  Article  Google Scholar 

  13. 13

    Lagerqvist, J., Zwolak, M. & Di Ventra, M. Influence of the environment and probes on rapid DNA sequencing via transverse electronic transport. Biophys. J. 93, 2384–2390 (2007).

    CAS  Article  Google Scholar 

  14. 14

    He, J., Lin, L., Zhang, P. & Lindsay, S. Identification of DNA basepairing via tunnel-current decay. Nano Lett. 7, 3854–3858 (2007).

    CAS  Article  Google Scholar 

  15. 15

    Chang, S. et al. Tunnelling readout of hydrogen-bonding-based recognition. Nature Nanotech. 4, 297–301 (2009).

    CAS  Article  Google Scholar 

  16. 16

    Fischbein, M. D. & Drndic, M. Sub-10 nm device fabrication in a transmission electron microscope. Nano Lett. 7, 1329–1337 (2007).

    CAS  Article  Google Scholar 

  17. 17

    Liang, X. & Chou, S. Y. Nanogap detector inside nanofluidic channel for real-time label-free DNA analysis. Nano Lett. 8, 1472–1476 (2008).

    CAS  Article  Google Scholar 

  18. 18

    Maleki, T., Mohammadi, S. & Ziaie, B. A nanofluidic channel with embedded transverse nanoelectrodes. Nanotechnology 20, 105302 (2009).

    CAS  Article  Google Scholar 

  19. 19

    Tsutsui, M., Taniguchi, M. & Kawai, T. Transverse field effects on DNA-sized particle dynamics. Nano Lett. 9, 1659–1662 (2009).

    CAS  Article  Google Scholar 

  20. 20

    Tsutsui, M., Taniguchi, M. & Kawai, T. Fabrication of 0.5 nm electrode gaps using self-breaking technique. Appl. Phys. Lett. 93, 163115 (2008).

    Article  Google Scholar 

  21. 21

    Frisch, M. J. et al. Gaussian03, revisionC.02. (Gaussian, Inc., 2003).

    Google Scholar 

  22. 22

    Troisi, A. & Ratner, M. A. Molecular signatures in the transport properties of molecular wire junctions: what makes a junction ‘molecular’? Small 2, 172–181 (2006).

    CAS  Article  Google Scholar 

  23. 23

    Simmons, J. G. Generalized formula for the electronic tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 34, 1793–1803 (1963).

    Article  Google Scholar 

  24. 24

    Wang, W., Lee, T. & Reed, M. A. Mechanism of electron conduction in self-assembled alkanethiol monolayer devices. Phys. Rev. B 68, 035416 (2003).

    Article  Google Scholar 

  25. 25

    Kundu, J. et al. Adenine- and adenosine monophosphate (AMP)–gold binding interactions studied by surface-enhanced Raman and infrared spectroscopies. J. Phys. Chem. C 113, 14390–14397 (2009).

    CAS  Article  Google Scholar 

  26. 26

    Brown, K. A., Park, S. & Hamad-Schifferli, K. Nucleotide–surface interactions in DNA-modified Au–nanoparticle conjugates: sequence effects on reactivity and hybridization. J. Phys. Chem. C 112, 7517–7521 (2008).

    CAS  Article  Google Scholar 

  27. 27

    Taniguchi, M. & Kawai, T. DNA electronics. Physica E 33, 1–12 (2006).

    CAS  Article  Google Scholar 

  28. 28

    Peng, H. & Ling, X. S. Reverse DNA translocation through a solid-state nanopore by magnetic tweezers. Nanotechnology 20, 185101 (2009).

    Article  Google Scholar 

  29. 29

    Agraït, N., Yeyati, A. L. & van Ruitenbeek, J. M. Quantum properties of atomic-sized conductors. Phys. Rep. 377, 81–279 (2003).

    Article  Google Scholar 

  30. 30

    Tsutsui, M., Shoji, K., Taniguchi, M. & Kawai, T. Formation and self-breaking mechanism of stable atom-sized junctions. Nano Lett. 8, 345–349 (2008).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Grant-in-Aid for Scientific Research on Innovative Areas (no. 20200025) from the Japanese Ministry of Education, Culture, Sports, Science and Technology.

Author information

Affiliations

Authors

Contributions

M. Taniguchi and T.K. planned and designed the experiments. M. Tsutsui, M. Taniguchi and K.Y. participated in fabrications of nano-MCBJs and single-nucleotide detection measurements. M. Tsutsui, M. Taniguchi and K.Y. performed data analyses. M. Tsutsui, M. Taniguchi and T.K. co-wrote the paper.

Corresponding authors

Correspondence to Masateru Taniguchi or Tomoji Kawai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 878 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tsutsui, M., Taniguchi, M., Yokota, K. et al. Identifying single nucleotides by tunnelling current. Nature Nanotech 5, 286–290 (2010). https://doi.org/10.1038/nnano.2010.42

Download citation

Further reading