Kinetics of antimicrobial peptide activity measured on individual bacterial cells using high-speed atomic force microscopy

Abstract

Observations of real-time changes in living cells have contributed much to the field of cellular biology. The ability to image whole, living cells with nanometre resolution on a timescale that is relevant to dynamic cellular processes has so far been elusive1,2. Here, we investigate the kinetics of individual bacterial cell death using a novel high-speed atomic force microscope optimized for imaging live cells in real time. The increased time resolution (13 s per image) allows the characterization of the initial stages of the action of the antimicrobial peptide CM15 on individual Escherichia coli cells with nanometre resolution. Our results indicate that the killing process is a combination of a time-variable incubation phase (which takes seconds to minutes to complete) and a more rapid execution phase.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Small AFM cantilevers for high-speed AFM.
Figure 2: Escherichia coli cell disruption induced by CM15, imaged with high-speed AFM.
Figure 3: AmP-induced surface morphology change correlates to cell death.
Figure 4: Early-stage kinetics of CM15 action measured by AFM correlates with bulk killing activity experiment.

References

  1. 1

    Dufrene, Y. F. Using nanotechniques to explore microbial surfaces. Nature Rev. Micro. 2, 451–460 (2004).

    CAS  Article  Google Scholar 

  2. 2

    Dufrene, Y. F. Towards nanomicrobiology using atomic force microscopy. Nature Rev. Micro. 6, 674–680 (2008).

    CAS  Article  Google Scholar 

  3. 3

    Matzke, R., Jacobson, K. & Radmacher, M. Direct, high-resolution measurement of furrow stiffening during division of adherent cells. Nature Cell. Biol. 3, 607–610 (2001).

    CAS  Article  Google Scholar 

  4. 4

    Muller, D. J., Baumeister, W. & Engel, A. Controlled unzipping of a bacterial surface layer with atomic force microscopy. Proc. Natl Acad. Sci. USA 96, 13170–13174 (1999).

    CAS  Article  Google Scholar 

  5. 5

    Muller, D. J., Fotiadis, D., Scheuring, S., Muller, S. A. & Engel, A. Electrostatically balanced subnanometer imaging of biological specimens by atomic force microscope. Biophys. J. 76, 1101–1111 (1999).

    CAS  Article  Google Scholar 

  6. 6

    Plomp, M., Leighton, T. J., Wheeler, K. E., Hill, H. D. & Malkin, A. J. In vitro high-resolution structural dynamics of single germinating bacterial spores. Proc. Natl Acad. Sci.USA 104, 9644–9649 (2007).

    CAS  Article  Google Scholar 

  7. 7

    Francius, G., Domenech, O., Mingeot-Leclercq, M. P. & Dufrene, Y. F. Direct observation of Staphylococcus aureus cell wall digestion by lysostaphin. J. Bacteriol. 190, 7904–7909 (2008).

    CAS  Article  Google Scholar 

  8. 8

    Hinterdorfer, P., Baumgartner, W., Gruber, H. J., Schilcher, K. & Schindler, H. Detection and localization of individual antibody–antigen recognition events by atomic force microscopy. Proc. Natl Acad. Sci. USA 93, 3477–3481 (1996).

    CAS  Article  Google Scholar 

  9. 9

    Muller, D. J. & Dufrene, Y. F. Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nature Nanotech. 3, 261–269 (2008).

    Article  Google Scholar 

  10. 10

    Ando, T. et al. A high-speed atomic force microscope for studying biological macromolecules. Proc. Natl Acad. Sci. USA 98, 12468–12472 (2001).

    CAS  Article  Google Scholar 

  11. 11

    Kobayashi, M., Sumitomo, K. & Torimitsu, K. Real-time imaging of DNA–streptavidin complex formation in solution using a high-speed atomic force microscope. Ultramicroscopy 107, 184–190 (2007).

    CAS  Article  Google Scholar 

  12. 12

    Hansma, P. K., Schitter, G., Fantner, G. E. & Prater, C. Applied physics—high-speed atomic force microscopy. Science 314, 601–602 (2006).

    CAS  Article  Google Scholar 

  13. 13

    Dufrene, Y. F. Atomic force microscopy and chemical force microscopy of microbial cells. Nature Protocols 3, 1132–1138 (2008).

    CAS  Article  Google Scholar 

  14. 14

    Fantner, G. E. et al. Components for high speed atomic force microscopy. Ultramicroscopy 106, 881–887 (2006).

    CAS  Article  Google Scholar 

  15. 15

    Viani, M. B. et al. Fast imaging and fast force spectroscopy of single biopolymers with a new atomic force microscope designed for small cantilevers. Rev. Sci. Instrum. 70, 4300–4303 (1999).

    CAS  Article  Google Scholar 

  16. 16

    Tiozzo, E., Rocco, G., Tossi, A. & Romeo, D. Wide-spectrum antibiotic activity of synthetic, amphipathic peptides. Biochem. Biophys. Res. Commun. 249, 202–206 (1998).

    CAS  Article  Google Scholar 

  17. 17

    Gottlieb, C. T. et al. Antimicrobial peptides effectively kill a broad spectrum of Listeria monocytogenes and Staphylococcus aureus strains independently of origin, sub-type or virulence factor expression. BMC Microbiol. 8, 205 (2008).

    Article  Google Scholar 

  18. 18

    Hancock, R. E. W. & Sahl, H. G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nature Biotechnol. 24, 1551–1557 (2006).

    CAS  Article  Google Scholar 

  19. 19

    Loose, C., Jensen, K., Rigoutsos, I. & Stephanopoulos, G. A linguistic model for the rational design of antimicrobial peptides. Nature 443, 867–869 (2006).

    CAS  Article  Google Scholar 

  20. 20

    Andreu, D. et al. Shortened cecropin-a melittin hybrids—significant size-reduction retains potent antibiotic-activity. FEBS Lett. 296, 190–194 (1992).

    CAS  Article  Google Scholar 

  21. 21

    Kalfa, V. C. et al. Congeners of SMAP29 kill ovine pathogens and induce ultrastructural damage in bacterial cells. Antimicrob. Agents Chemother. 45, 3256–3261 (2001).

    CAS  Article  Google Scholar 

  22. 22

    Meincken, M., Holroyd, D. L. & Rautenbach, M. Atomic force microscopy study of the effect of antimicrobial peptides on the cell envelope of Escherichia coli. Antimicrob. Agents Chemother. 49, 4085–4092 (2005).

    CAS  Article  Google Scholar 

  23. 23

    Mangoni, M. L. et al. Effects of the antimicrobial peptide temporin L on cell morphology, membrane permeability and viability of Escherichia coli. J. Peptide Sci. 10, 859–865 (2004).

    Google Scholar 

  24. 24

    Bechinger, B. The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy. Biochim. Biophys. Acta Biomembranes 1462, 157–183 (1999).

    CAS  Article  Google Scholar 

  25. 25

    Ladokhin, A. S., Selsted, M. E. & White, S. H. Sizing membrane pores in lipid vesicles by leakage of co-encapsulated markers: pore formation by melittin. Biophys. J. 72, 1762–1766 (1997).

    CAS  Article  Google Scholar 

  26. 26

    Lee, M. T., Hung, W. C., Chen, F. Y. & Huang, H. W. Mechanism and kinetics of pore formation in membranes by water-soluble amphipathic peptides. Proc. Natl Acad. Sci. USA 105, 5087–5092 (2008).

    CAS  Article  Google Scholar 

  27. 27

    Sato, H. & Feix, J. B. Osmoprotection of bacterial cells from toxicity caused by antimicrobial hybrid peptide CM15. Biochemistry 45, 9997–10007 (2006).

    CAS  Article  Google Scholar 

  28. 28

    Ferullo, D. J., Cooper, D. L., Moore, H. R. & Lovett, S. T. Cell cycle synchronization of Escherichia coli using the stringent response, with fluorescence labeling assays for DNA content and replication. Methods 48, 8–13 (2009).

    CAS  Article  Google Scholar 

  29. 29

    Alsteens, D. et al. Organization of the mycobacterial cell wall: a nanoscale view. Pflug. Arch. Eur. J. Phy. 456, 117–125 (2008).

    CAS  Article  Google Scholar 

  30. 30

    Albeck, J. G. et al. Quantitative analysis of pathways controlling extrinsic apoptosis in single cells. Mol. Cell 30, 11–25 (2008).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank T. Chau for helpful discussions about antimicrobial peptides. G.E.F. is supported by an Erwin- Schrödinger fellowship J2778-B12. R.J.B. is the recipient of a National Institutes of Health Biotechnology Training Program Fellowship. A.M.B. would like to thank the Massachusetts Institute of Technology for their generous support. This work was further funded by the Army Research Office through the Institute for Soldier Nanotechnology, the National Institute of Health under Award RO1 GM065354 and by the Austrian Research Promotion Agency under award no. VO156-08-BII: NSI-FABICAN.

Author information

Affiliations

Authors

Contributions

G.E.F. and R.J.B. contributed to experimental design and execution and writing of the manuscript. D.S.G. designed the methods and sample preparation. A.M.B. contributed to experimental design, supervision and editing of the manuscript.

Corresponding author

Correspondence to Angela M. Belcher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1515 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fantner, G., Barbero, R., Gray, D. et al. Kinetics of antimicrobial peptide activity measured on individual bacterial cells using high-speed atomic force microscopy. Nature Nanotech 5, 280–285 (2010). https://doi.org/10.1038/nnano.2010.29

Download citation

Further reading