Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Polyethylene nanofibres with very high thermal conductivities

Abstract

Bulk polymers are generally regarded as thermal insulators, and typically have thermal conductivities on the order of 0.1 W m−1 K−1 (ref. 1). However, recent work2,3,4 suggests that individual chains of polyethylene—the simplest and most widely used polymer—can have extremely high thermal conductivity. Practical applications of these polymers may also require that the individual chains form fibres or films. Here, we report the fabrication of high-quality ultra-drawn polyethylene nanofibres with diameters of 50–500 nm and lengths up to tens of millimetres. The thermal conductivity of the nanofibres was found to be as high as 104 W m−1 K−1, which is larger than the conductivities of about half of the pure metals. The high thermal conductivity is attributed to the restructuring of the polymer chains by stretching, which improves the fibre quality toward an ‘ideal’ single crystalline fibre. Such thermally conductive polymers are potentially useful as heat spreaders and could supplement conventional metallic heat-transfer materials, which are used in applications such as solar hot-water collectors, heat exchangers and electronic packaging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Polyethylene chains and fibres.
Figure 2: Schematic of experimental set-up used to measure the thermal properties of a single ultra-drawn nanofibre.
Figure 3: Measuring the thermal conductivity of individual polyethylene nanofibres.
Figure 4: Molecular dynamics simulation about polyethylene.

Similar content being viewed by others

References

  1. Sperling, L. H. Introduction to Physical Polymer Science (Wiley-Interscience, 2006)

    Google Scholar 

  2. Wang, Z. et al. Ultrafast flash thermal conductance of molecular chains. Science 317, 787–790 (2007).

    Article  CAS  Google Scholar 

  3. Wang, R. Y., Segalman, R. A. & Majumdar, A. Room temperature thermal conductance of alkanedithiol self-assembled monolayers. Appl. Phys. Lett. 89, 173113 (2006).

    Article  Google Scholar 

  4. Henry, A. & Chen, G. High thermal conductivity of single polyethylene chains using molecular dynamics simulations. Phys. Rev. Lett. 101, 235502 (2008).

    Article  Google Scholar 

  5. Baur, J. & Silverman, E. Challenges and opportunities in multifunctional nanocomposite structures for aerospace applications. MRS Bull. 32, 328–334 (2007).

    Article  CAS  Google Scholar 

  6. Winey, K. I., Kashiwagi, T. & Mu, M. F. Improving electrical conductivity and thermal properties of polymers by the addition of carbon nanotubes as fillers. MRS Bull. 32, 348–353 (2007).

    Article  CAS  Google Scholar 

  7. Kim, P., Shi, L., Majumdar, A. & McEuen, P. L. Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87, 215502 (2000).

    Article  Google Scholar 

  8. Moniruzzaman, M. & Winey, K. I. Polymer nanocomposites containing carbon nanotubes. Macromolecules 39, 5194–5205 (2006).

    Article  CAS  Google Scholar 

  9. Huxtable, S. T. et al. Interfacial heat flow in carbon nanotube suspensions. Nature Mater. 2, 731–734 (2003).

    Article  CAS  Google Scholar 

  10. Kanamoto, T., Tsuruta, A., Tanaka, K., Takeda, M. & Porter, R. S. Superdrawing of ultrahigh molecular-weight polyethylene 1. Effect of techniques on drawing of single-crystal mats. Macromolecules 21, 470–477 (1988).

    Article  CAS  Google Scholar 

  11. Choy, C. L., Wong, Y. W., Yang, G. W. & Kanamoto, T. Elastic modulus and thermal conductivity of ultradrawn polyethylene. J. Polym. Sci. B 37, 3359–3367 (1999).

    Article  CAS  Google Scholar 

  12. Fermi, E., Pasta, J. & Ulam, S. Studies of nonlinear problems. Los Alamos Report LA1940 (1955).

  13. Chae, H. G. & Kumar, S. Making strong fibers. Science 319, 908–909 (2008).

    Article  CAS  Google Scholar 

  14. Smith, P. & Lemstra, P. J. Ultra-high-strength polyethylene filaments by solution spinning/drawing. J. Mater. Sci. 15, 505–514 (1980).

    Article  CAS  Google Scholar 

  15. Choy, C. L., Fei, Y. & Xi, T. G. Thermal-conductivity of gel-spun polyethylene fibers. J. Polym. Sci. B 31, 365–370 (1993).

    Article  CAS  Google Scholar 

  16. Poulaert, B., Chielens, J. C., Vandenhende, C., Issi, J. P. & Legras, R. Thermal conductivity of highly oriented polyethylene fibers. Polym. Commun. 31, 148–151 (1990).

    CAS  Google Scholar 

  17. Fujishiro, H., Ikebe1, M., Kashima, T. & Yamanaka, A. Drawing effect on thermal properties of high-strength polyethylene fibers. Jpn J. Appl. Phys. 37, 1994–1995 (1998).

    Article  CAS  Google Scholar 

  18. Harfenist, S. A. et al. Direct drawing of suspended filamentary micro- and nanostructures from liquid polymer. Nano Lett. 4, 1931–1937 (2004).

    Article  CAS  Google Scholar 

  19. Nain, A. S., Amon, C. & Sitti, M. Proximal probes based nanorobotic drawing of polymer micro/nanofibers. IEEE Trans. Nanotechnol. 5, 499–510 (2006).

    Article  Google Scholar 

  20. Smith, P., Chanzy, H. D. & Rotzinger, B. P. Drawing of virgin ultrahigh molecular-weight polyethylene—an alternative route to high-strength high modulus materials 2. Influence of polymerization temperature. J. Mater. Sci. 22, 523–531 (1987).

    Article  CAS  Google Scholar 

  21. Barnes, J. R., Stephenson, R. J., Welland, M. E., Gerber, C. & Gimzewski, J. K. Photothermal spectroscopy with femtojoule sensitivity using a micromechanical device. Nature 372, 79–81 (1994).

    Article  CAS  Google Scholar 

  22. Majumdar, A. Scanning thermal microscopy. Annu. Rev. Mater. Sci. 29, 505–585 (1999).

    Article  CAS  Google Scholar 

  23. Shen, S., Narayanaswamy, A., Goh, S. & Chen, G. Thermal conductance of bimaterial microcantilevers. Appl. Phys. Lett. 92, 063509 (2008).

    Article  Google Scholar 

  24. Peterlin, A. Drawing and extrusion of semi-crystalline polymers. Coll. Polym. Sci. 265, 357–382 (1987).

    Article  CAS  Google Scholar 

  25. Van Aerle, N. A. J. M. & Braam, A. W. M. A structural study on solid state drawing of solution-crystallized ultra-high molecular weight polyethylene. J. Mater. Sci. 23, 4429–4436 (1988).

    Article  CAS  Google Scholar 

  26. Morelli, D. T., Heremans, J., Sakamoto, M. & Uher, C. Anisotropic heat-conduction in diacetylenes. Phys. Rev. Lett. 57, 869–872 (1986).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by US National Science Foundation (NSF) grant numbers CBET-0755825 and CBET-0506830 for molecular dynamics simulation and fibre fabrication, and US Department of Energy (DOE) grant number DE-FG02-02ER45977 for the cantilever measurement platform.

Author information

Authors and Affiliations

Authors

Contributions

S.S. and G.C. conceived and designed the experiments. S.S. and J.T. performed the experiments. A.H. provided the molecular dynamics simulation. R.Z. contributed TEM analysis. S.S., A.H. and G.C. wrote the paper. All authors discussed the results and commented on the manuscript. G.C. supervised the research.

Corresponding author

Correspondence to Gang Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1173 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, S., Henry, A., Tong, J. et al. Polyethylene nanofibres with very high thermal conductivities. Nature Nanotech 5, 251–255 (2010). https://doi.org/10.1038/nnano.2010.27

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.27

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing