Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Label-free single-molecule detection of DNA-hybridization kinetics with a carbon nanotube field-effect transistor

Abstract

Single-molecule measurements of biomolecules can provide information about the molecular interactions and kinetics that are hidden in ensemble measurements. However, there is a requirement for techniques with improved sensitivity and time resolution for use in exploring biomolecular systems with fast dynamics. Here, we report the detection of DNA hybridization at the single-molecule level using a carbon nanotube field-effect transistor. By covalently attaching a single-stranded probe DNA sequence to a point defect in a carbon nanotube, we are able to measure two-level fluctuations in the conductance of the nanotube in the presence of a complementary DNA target. The kinetics of the system are studied as a function of temperature, allowing the measurement of rate constants, melting curves and activation energies for different sequences and target concentrations. The kinetics demonstrate non-Arrhenius behaviour, in agreement with DNA hybridization experiments using fluorescence correlation spectroscopy. This technique is label-free and could be used to probe single-molecule dynamics at microsecond timescales.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electrochemical oxidation of a carbon nanotube.
Figure 2: Real-time measurements of DNA kinetics.
Figure 3: DNA melting curves.
Figure 4: DNA kinetics analysis.

Similar content being viewed by others

References

  1. Bonnet, G., Krichevsky, O. & Libchaber, A. Kinetics of conformational fluctuations in DNA hairpin-loops. Proc. Natl Acad. Sci. USA 95, 8602–8606 (1998).

    Article  CAS  Google Scholar 

  2. Li, H. T., Ren, X. J., Ying, L. M., Balasubramanian, S. & Klenerman, D. Measuring single-molecule nucleic acid dynamics in solution by two-color filtered ratiometric fluorescence correlation spectroscopy. Proc. Natl Acad. Sci. USA 101, 14425–14430 (2004).

    Article  CAS  Google Scholar 

  3. Wallace, M. I., Ying, L., Balasubramanian, S. & Klenerman, D. Non-Arrhenius kinetics for the loop closure of a DNA hairpin. Proc. Natl Acad. Sci. USA 98, 5584–5589 (2001).

    Article  CAS  Google Scholar 

  4. Deniz, A. A., Mukhopadhyay, S. & Lemke, E. A. Single-molecule biophysics: at the interface of biology, physics and chemistry. J. R. Soc. Interface 5, 15–45 (2008).

    Article  CAS  Google Scholar 

  5. Fei, J., Kosuri, P., MacDougall, D. D. & Gonzalez, R. L. Jr Coupling of ribosomal L1 stalk and tRNA dynamics during translation elongation. Mol. Cell. 30, 348–359 (2008).

    Article  CAS  Google Scholar 

  6. Patolsky, F. et al. Electrical detection of single viruses. Proc. Natl Acad. Sci. USA 101, 14017–14022 (2004).

    Article  CAS  Google Scholar 

  7. Armani, A. M., Kulkarni, R. P., Fraser, S. E., Flagan, R. C. & Vahala, K. J. Label-free, single-molecule detection with optical microcavities. Science 317, 783–787 (2007).

    Article  CAS  Google Scholar 

  8. Burg, T. P. et al. Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature 446, 1066–1069 (2007).

    Article  CAS  Google Scholar 

  9. Hughes, R. C., Ricco, A. J., Butler, M. A. & Martin, S. J. Chemical microsensors. Science 254, 74–80 (1991).

    Article  CAS  Google Scholar 

  10. Cecconi, C., Shank, E. A., Bustamante, C. & Marqusee, S. Direct observation of the three-state folding of a single protein molecule. Science 309, 2057–2060 (2005).

    Article  CAS  Google Scholar 

  11. Besteman, K., Lee, J. O., Wiertz, F. G. M., Heering, H. A. & Dekker, C. Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett. 3, 727–730 (2003).

    Article  CAS  Google Scholar 

  12. Star, A. et al. Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. Proc. Natl Acad. Sci. USA 103, 921–926 (2006).

    Article  CAS  Google Scholar 

  13. Guo, X., Gorodetsky, A. A., Hone, J., Barton, J. K. & Nuckolls, C. Conductivity of a single DNA duplex bridging a carbon nanotube gap. Nature Nanotech. 3, 163–167 (2008).

    Article  CAS  Google Scholar 

  14. Goldsmith, B. R. et al. Conductance-controlled point functionalization of single-walled carbon nanotubes. Science 315, 77–81 (2007).

    Article  CAS  Google Scholar 

  15. Goldsmith, B. R., Coroneus, J. G., Kane, A. A., Weiss, G. A. & Collins, P. G. Monitoring single-molecule reactivity on a carbon nanotube. Nano Lett. 8, 189–194 (2008).

    Article  CAS  Google Scholar 

  16. Ishida, M., Hongo, H., Nihey, F. & Ochiai, Y. Diameter-controlled carbon nanotubes grown from lithographically defined nanoparticles. Jpn J. Appl. Phys. 2 43, L1356–L1358 (2004).

    Article  Google Scholar 

  17. Chen, R. J. et al. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl Acad. Sci. USA 100, 4984–4989 (2003).

    Article  CAS  Google Scholar 

  18. Kosynkin, D. V. et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009).

    Article  CAS  Google Scholar 

  19. Bachtold, A. et al. Scanned probe microscopy of electronic transport in carbon nanotubes. Phys. Rev. Lett. 84, 6082–6085 (2000).

    Article  CAS  Google Scholar 

  20. Freitag, M. et al. Imaging of the Schottky barriers and charge depletion in carbon nanotube transistors. Nano Lett. 7, 2037–2042 (2007).

    Article  CAS  Google Scholar 

  21. Minot, E. D. et al. Carbon nanotube biosensors: the critical role of the reference electrode. Appl. Phys. Lett. 91, 093507 (2007).

    Article  Google Scholar 

  22. Borer, P. N., Dengler, B., Tinoco, I. Jr & Uhlenbeck, O. C. Stability of ribonucleic acid double-stranded helices. J. Mol. Biol. 86, 843–853 (1974).

    Article  CAS  Google Scholar 

  23. Gong, P. & Levicky, R. DNA surface hybridization regimes. Proc. Natl Acad. Sci. USA 105, 5301–5306 (2008).

    Article  CAS  Google Scholar 

  24. Sun, Y., Harris, N. C. & Kiang, C. H. Melting transition of directly linked gold nanoparticle DNA assembly. Physica A 350, 89–94 (2005).

    Article  CAS  Google Scholar 

  25. Karachevtsev, V. A. et al. Adsorption of poly(rA) on the carbon nanotube surface and its hybridization with poly(rU). ChemPhysChem 9, 2010–2018 (2008).

    Article  CAS  Google Scholar 

  26. Brewood, G. P. et al. Electrical detection of the temperature induced melting transition of a DNA hairpin covalently attached to gold interdigitated microelectrodes. Nucleic Acids Res. 36, e98 (2008).

    Article  Google Scholar 

  27. Bronson, J. E., Fei, J., Hofman, J. M., Gonzalez, R. L. Jr & Wiggins, C. H. Learning rates and states from biophysical time series: a Bayesian approach to model selection and single-molecule FRET data. Biophys J. 97, 3196–3205 (2009).

    Article  CAS  Google Scholar 

  28. Fei, J. et al. Allosteric collaboration between elongation factor G and the ribosomal L1 stalk directs tRNA movements during translation. Proc. Natl Acad. Sci. USA 106, 15702–15707 (2009).

    Article  CAS  Google Scholar 

  29. Chan, V., Graves, D. J. & McKenzie, S. E. The biophysics of DNA hybridization with immobilized oligonucleotide probes. Biophys J. 69, 2243–2255 (1995).

    Article  CAS  Google Scholar 

  30. von Hippel, P. H. & Berg, O. G. Facilitated target location in biological systems. J. Biol. Chem. 264, 675–678 (1989).

    CAS  Google Scholar 

  31. Halford, S. E. & Marko, J. F. How do site-specific DNA-binding proteins find their targets? Nucleic Acids Res. 32, 3040–3052 (2004).

    Article  CAS  Google Scholar 

  32. Ansari, A., Kuznetsov, S. V. & Shen, Y. Configurational diffusion down a folding funnel describes the dynamics of DNA hairpins. Proc. Natl Acad. Sci. USA 98, 7771–7776 (2001).

    Article  CAS  Google Scholar 

  33. Oliveberg, M., Tan, Y. J. & Fersht, A. R. Negative activation enthalpies in the kinetics of protein folding. Proc. Natl Acad. Sci. USA 92, 8926–8929 (1995).

    Article  CAS  Google Scholar 

  34. Dobson, C. M., Sali, A. & Karplus, M. Protein folding: a perspective from theory and experiment. Angew. Chem. Int. Ed. 37, 868–893 (1998).

    Article  Google Scholar 

  35. Chalikian, T. V., Volker, J., Plum, G. E. & Breslauer, K. J. A more unified picture for the thermodynamics of nucleic acid duplex melting: a characterization by calorimetric and volumetric techniques. Proc. Natl Acad. Sci. USA 96, 7853–7858 (1999).

    Article  CAS  Google Scholar 

  36. Altan-Bonnet, G., Libchaber, A. & Krichevsky, O. Bubble dynamics in double-stranded DNA. Phys. Rev. Lett. 90, 138101 (2003).

    Article  Google Scholar 

  37. Metzler, R., Ambjornsson, T., Hanke, A. & Fogedby, H. C. Single DNA denaturation and bubble dynamics. J. Phys. Condens. Matter 21, 034111 (2009).

    Article  Google Scholar 

  38. Huang, L. M., Cui, X. D., White, B. & O'Brien, S. P. Long and oriented single-walled carbon nanotubes grown by ethanol chemical vapor deposition. J. Phys. Chem. B 108, 16451–16456 (2004).

    Article  CAS  Google Scholar 

  39. Ishigami, M., Chen, J. H., Cullen, W. G., Fuhrer, M. S. & Williams, E. D. Atomic structure of graphene on SiO2 . Nano Lett. 7, 1643–1648 (2007).

    Article  CAS  Google Scholar 

  40. Hermanson, G. T. Bioconjugate Techniques 2nd edn (Academic Press, 2008).

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Science Foundation (grants ENG-0707748 and CHE-0641523). Additional support was provided by the New York State Office of Science, Technology, and Academic Research (NYSTAR). This work was also supported in part by the Office of Naval Research (grants N00014-09-01-0250 and N00014-09-1-1117) and by the National Institutes of Health (grant R33-HG003089).

Author information

Authors and Affiliations

Authors

Contributions

S.S., C.-Y.C. and K.L.S. designed the experiments. S.S. and C.-Y.C. performed the experiments and analysed the data. Y.-J.Y. and P.K. assisted in the AFM and SGM experiments. C.N and R.L.G. assisted with data analysis. S.S., C.-Y.C and K.L.S. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Kenneth L. Shepard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2758 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sorgenfrei, S., Chiu, Cy., Gonzalez, R. et al. Label-free single-molecule detection of DNA-hybridization kinetics with a carbon nanotube field-effect transistor. Nature Nanotech 6, 126–132 (2011). https://doi.org/10.1038/nnano.2010.275

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.275

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing