Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Visualization of the self-assembly of silica nanochannels reveals growth mechanism

Abstract

Self-assembled mesoporous structures with well-ordered nanoscale channels could be used in applications such as molecular separation, nano-optics, molecular electronics, nanomedicine and catalysis1,2,3,4,5,6,7. However, the domain sizes that can be created in such systems are limited by our lack of a detailed understanding of the relevant growth processes8,9,10,11,12. Here we report the real-time observation of domain growth in the self-assembly of silica nanochannels using fluorescence polarization imaging and atomic force microscopy. We show that transient lamellar structures precede the formation of hexagonal layers, and that the layer growth follows two distinct pathways. In addition, the domains are grown on a mesoporous film substrate, which acts as a sieve and allows control of the delivery of the reactive species. We use these insights and capabilities to grow layers of well-ordered silica nanochannels with domain sizes of up to 0.3 mm.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Silica mesoporous layers.
Figure 2: Growth dynamics visualized by fluorescence microscopy.
Figure 3: Control of domain size.

References

  1. Davis, M. E. Ordered porous materials for emerging applications. Nature 417, 813–821 (2002).

    CAS  Article  Google Scholar 

  2. Grosso, D. et al. Periodically ordered nanoscale islands and mesoporous films composed of nanocrystalline multimetallic oxides. Nature Mater. 3, 787–792 (2004).

    CAS  Article  Google Scholar 

  3. Riehemann, K. et al. Nanomedicine—challenge and perspectives. Angew. Chem. Int. Ed. 48, 872–897 (2009).

    CAS  Article  Google Scholar 

  4. Dag, Ö., Ozin, G. A., Yang, H., Reber, C. & Bussière, G. Photoluminescent silicon clusters in oriented hexagonal mesoporous silica film. Adv. Mater. 11, 474–480 (1999).

    CAS  Article  Google Scholar 

  5. Sanchez, C., Boissiere, C., Grosso, D., Laberty, C. & Nicole, L. Design, synthesis, and properties of inorganic and hybrid thin films having periodically organized nanoporosity. Chem. Mater. 20, 682–737 (2008).

    CAS  Article  Google Scholar 

  6. Yang, C. M., Cho, A. T., Pan, F. M., Tsai, T. G. & Chao, K. J. Spin-on mesoporous silica films with ultralow dielectric constants, ordered pore structures, and hydrophobic surfaces. Adv. Mater. 13, 1099–1102 (2001).

    CAS  Article  Google Scholar 

  7. Chen, Z. et al. DNA translocation through an array of kinked nanopores. Nature Mater. 9, 667–675 (2010).

    CAS  Article  Google Scholar 

  8. Grosso, D. et al. Two-dimensional hexagonal mesoporous silica thin films prepared from block copolymers: detailed characterization amd formation mechanism. Chem. Mater. 13, 1848–1856 (2001).

    CAS  Article  Google Scholar 

  9. Grosso, D. et al. Fundamentals of mesostructuring through evaporation-induced self-assembly. Adv. Funct. Mater. 14, 309–322 (2004).

    CAS  Article  Google Scholar 

  10. Antonietti, M. & Ozin, G. A. Promises and problems of mesoscale materials chemistry or why meso? Chem. Eur. J. 10, 28–41 (2004).

    CAS  Article  Google Scholar 

  11. Gibaud, A. et al. Evaporation-controlled self-assembly of silica surfactant mesophases. J. Phys. Chem. B 107, 6114–6118 (2003).

    CAS  Article  Google Scholar 

  12. Doshi, D. A. et al. Peering into the self-assembly of surfactant templated thin-film silica mesophases. J. Am. Chem. Soc. 125, 11646–11655 (2003).

    CAS  Article  Google Scholar 

  13. Lu, Y. F. et al. Continuous formation of supported cubic and hexagonal mesoporous films by sol gel dip-coating. Nature 389, 364–368 (1997).

    CAS  Article  Google Scholar 

  14. Yang, H., Kuperman, A., Coombs, N., MamicheAfara, S. & Ozin, G. A. Synthesis of oriented films of mesoporous silica on mica. Nature 379, 703–705 (1996).

    CAS  Article  Google Scholar 

  15. Brinker, C. J., Lu, Y. F., Sellinger, A. & Fan, H. Y. Evaporation-induced self-assembly: nanostructures made easy. Adv. Mater. 11, 579–585 (1999).

    CAS  Article  Google Scholar 

  16. Kirstein, J. et al. Exploration of nanostructured channel systems with single-molecule probes. Nature Mater. 6, 303–310 (2007).

    CAS  Article  Google Scholar 

  17. Zürner, A., Kirstein, J., Döblinger, M., Bräuchle, C. & Bein, T. Visualizing single-molecule diffusion in mesoporous materials. Nature 450, 705–708 (2007).

    Article  Google Scholar 

  18. Jung, C., Hellriegel, C., Michaelis, J. & Bräuchle, C. Single-molecule traffic in mesoporous materials: translational, orientational, and spectral dynamics. Adv. Mater. 19, 956–959 (2007).

    CAS  Article  Google Scholar 

  19. Jung, C. et al. Diffusion of oriented single molecules with switchable mobility in networks of long unidimensional nanochannels. J. Am. Chem. Soc. 130, 1638–1648 (2008).

    CAS  Article  Google Scholar 

  20. Tolbert, S. H., Firouzi, A., Stucky, G. D. & Chmelka, B. F. Magnetic field alignment of ordered silicate–surfactant composites and mesoporous silica. Science 278, 264–268 (1997).

    CAS  Article  Google Scholar 

  21. Platschek, B., Petkov, N. & Bein, T. Tuning the structure and orientation of hexagonally ordered mesoporous channels in anodic alumina membrane hosts: a 2D small-angle X-ray scattering study. Angew. Chem. Int. Ed. 45, 1134–1138 (2006).

    CAS  Article  Google Scholar 

  22. Koganti, V. R. et al. Generalized coating route to silica and titania films with orthogonally tilted cylindrical nanopore arrays. Nano Lett. 6, 2567–2570 (2006).

    CAS  Article  Google Scholar 

  23. Yamauchi, Y. et al. Magnetically induced orientation of mesochannels in 2D-hexagonal mesoporous silica films. J. Mater. Chem. 16, 3693–3700 (2006).

    CAS  Article  Google Scholar 

  24. Schirmeisen, A., Anczykowski, B. & Fuchs, H. in Nanotribology and Nanomechanics—An Introduction (ed. Bushan, B.) (Springer, 2005).

    Google Scholar 

  25. Holtrup, F. O. et al. Terrylenimides: new NIR fluorescent dyes. Eur. J. Chem. A 3, 219–225 (1997).

    CAS  Article  Google Scholar 

  26. Lebold, T. et al. Tuning single-molecule dynamics in functionalized mesoporous silica. Eur. J. Chem. A 15, 1661–1672 (2009).

    CAS  Article  Google Scholar 

  27. Pang, J. et al. Directed aerosol writing of ordered silica nanostructures on arbitrary surfaces with self-assembling inks. Small 4, 982–989 (2008).

    CAS  Article  Google Scholar 

  28. Trau, M. et al. Microscopic patterning of orientated mesoscopic silica through guided growth. Nature 390, 674–676 (1997).

    CAS  Article  Google Scholar 

  29. Jung, C. et al. A new photostable terrylene diimide dye for applications in single molecule studies and membrane labeling. J. Am. Chem. Soc. 128, 5283–5291 (2006).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank K. Müllen (Max Planck Institut) for kindly providing the TDI dye molecule, as well as T. Bein (LMU) for helpful discussions. This work was funded by SFB 486, SFB 749 and the Nanosystems Initiative Munich (NIM).

Author information

Authors and Affiliations

Authors

Contributions

C.J. conceived, designed and performed the experiments, analysed the data and co-wrote the paper. P.S. and M.D. designed and performed the experiments, and analysed the data. R.K. conceived the experiments. J.M. and C.B. conceived the experiments and co-wrote the paper.

Corresponding authors

Correspondence to Jens Michaelis or Christoph Bräuchle.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2601 kb)

Supplementary information

Supplementary movie 1 (AVI 10506 kb)

Supplementary information

Supplementary movie 2 (AVI 8918 kb)

Supplementary information

Supplementary movie 3 (AVI 12719 kb)

Supplementary information

Supplementary movie 4 (AVI 5168 kb)

Supplementary information

Supplementary movie 5 (AVI 5626 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jung, C., Schwaderer, P., Dethlefsen, M. et al. Visualization of the self-assembly of silica nanochannels reveals growth mechanism. Nature Nanotech 6, 87–92 (2011). https://doi.org/10.1038/nnano.2010.258

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.258

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research