Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Vibrational and electronic heating in nanoscale junctions

Abstract

Understanding and controlling the flow of heat is a major challenge in nanoelectronics. When a junction is driven out of equilibrium by light or the flow of electric charge, the vibrational and electronic degrees of freedom are, in general, no longer described by a single temperature1,2,3,4,5,6. Moreover, characterizing the steady-state vibrational and electronic distributions in situ is extremely challenging. Here, we show that surface-enhanced Raman emission may be used to determine the effective temperatures for both the vibrational modes and the electrons in the current in a biased metallic nanoscale junction decorated with molecules7. Molecular vibrations show mode-specific pumping by both optical excitation8 and d.c. current9, with effective temperatures exceeding several hundred kelvin. Anti-Stokes electronic Raman emission10,11 indicates that the effective electronic temperature at bias voltages of a few hundred millivolts can reach values up to three times the values measured when there is no current. The precise effective temperatures are model-dependent, but the trends as a function of bias conditions are robust, and allow direct comparisons with theories of nanoscale heating.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Measurement overview.
Figure 2: Optically driven vibrational pumping.
Figure 3: Electrically driven vibrational pumping.
Figure 4: Electronic heating under bias.

References

  1. Chen, Y.-C., Zwolak, M. & Di Ventra, M. Local heating in nanoscale conductors. Nano Lett. 3, 1691–1694 (2003).

    Article  CAS  Google Scholar 

  2. Galperin, M. & Nitzan, A. Current-induced light emission and light-induced current in molecular-tunneling junctions. Phys. Rev. Lett. 95, 206802 (2005).

    Article  Google Scholar 

  3. D'Agosta, R., Sai, N. & Di Ventra, M. Local electron heating in nanoscale conductors. Nano Lett. 6, 2935–2938 (2006).

    Article  CAS  Google Scholar 

  4. Pecchia, A., Romano, G. & Di Carlo, A. Theory of heat dissipation in molecular electronics. Phys. Rev. B 75, 035401 (2007).

    Article  Google Scholar 

  5. Huang, Z. et al. Local ionic and electron heating in single-molecule junctions. Nature Nanotech. 2, 698–703 (2007).

    Article  CAS  Google Scholar 

  6. Galperin, M., Nitzan, A. & Ratner, M. R. Heat conduction in molecular transport junctions. Phys. Rev. B 75, 155312 (2007).

    Article  Google Scholar 

  7. Ward, D. R. et al. Simultaneous measurements of electronic conduction and Raman response in molecular junctions. Nano Lett. 8, 919–924 (2008).

    Article  CAS  Google Scholar 

  8. Galloway, C. M., Le Ru, E. C. & Etchegoin, P. G. Single-molecule vibrational pumping in SERS. Phys. Chem. Chem. Phys. 11, 7372–7380 (2009).

    Article  CAS  Google Scholar 

  9. Ioffe, Z. et al. Detection of heating in current-carrying molecular junctions by Raman scattering. Nature Nanotech. 3, 727–732 (2008).

    Article  CAS  Google Scholar 

  10. Moskovits, M. Surface-enhanced Raman spectroscopy: a brief retrospective. J. Raman Spect. 36, 485–496 (2005).

    Article  CAS  Google Scholar 

  11. Otto, A., Akemann, W. & Pucci, A. Normal bands in surface-enhanced Raman scattering (SERS) and their relation to the electron–hole pair excitation background in SERS. Isr. J. Chem. 46, 307–315 (2006).

    Article  CAS  Google Scholar 

  12. Datta, S. Electronic Transport in Mesoscopic Systems (Cambridge Univ. Press, 1995).

    Book  Google Scholar 

  13. Stipe, B. C., Rezaei, M. A. & Ho, W. Single-molecule vibrational spectroscopy and microscopy. Science 280, 1732–1735 (1998).

    Article  CAS  Google Scholar 

  14. Park, H. et al. Nanomechanical oscillations in a single C60 transistor. Nature 407, 57–60 (2000).

    Article  CAS  Google Scholar 

  15. Galperin, M., Ratner, M. A. & Nitzan, A. Raman scattering from nonequilibrium molecular conduction junctions. Nano Lett. 9, 758–762 (2009).

    Article  CAS  Google Scholar 

  16. Smit, R. H. M., Untiedt, C. & van Ruitenbeek, J. M. The high-bias stability of monatomic chains. Nanotechnology 15, S472–S478 (2004).

    Article  CAS  Google Scholar 

  17. Tsutsui, M., Taniguchi, M. & Kawai, T. Local heating in metal–molecule–metal junctions. Nano Lett. 8, 3293–3297 (2008).

    Article  CAS  Google Scholar 

  18. Oron-Carl, M. & Krupke, R. Raman spectroscopic evidence for hot-phonon generation in electrically biased carbon nanotubes. Phys. Rev. Lett. 100, 127401 (2008).

    Article  CAS  Google Scholar 

  19. Berciaud, S. et al. Electron and optical phonon temperatures in electrically biased graphene. Phys. Rev. Lett. 104, 227401 (2010).

    Article  Google Scholar 

  20. Zawadowski, A. & Cardona, M. Theory of Raman scattering on normal metals with impurities. Phys. Rev. B 42, 10732–10734 (1990).

    Article  CAS  Google Scholar 

  21. Jiang, J., Bosnick, K., Maillard, M. & Brus, L. Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals. J. Phys. Chem. B 107, 9964–9972 (2003).

    Article  CAS  Google Scholar 

  22. Mahajan, S. et al. Understanding the surface-enhanced Raman spectroscopy ‘background’. J. Phys. Chem. C 114, 7242–7250 (2010).

    Article  CAS  Google Scholar 

  23. Park, H. et al. Fabrication of metallic electrodes with nanometer separation by electromigration. Appl. Phys. Lett. 75, 301–303 (1999).

    Article  CAS  Google Scholar 

  24. Ward, D. R. et al. Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy. Nano Lett. 7, 1396–1400 (2007).

    Article  CAS  Google Scholar 

  25. Natelson, D., Yu, L. H., Ciszek, J. W., Keane, Z. K. & Tour, J. M. Single-molecule transistors: electron transfer in the solid state. Chem. Phys. 324, 267–275 (2006).

    Article  CAS  Google Scholar 

  26. Ward, D. R., Scott, G. D., Keane, Z. K., Halas, N. J. & Natelson, D. Electronic and optical properties of electromigrated molecular junctions. J. Phys. Condens. Matter 20, 374118 (2008).

    Article  CAS  Google Scholar 

  27. Venkataraman, L. et al. Single-molecule circuits with well-defined molecular conductance. Nano Lett. 6, 458–462 (2006).

    Article  CAS  Google Scholar 

  28. Galperin, M., Nitzan, A., Ratner, M. A. & Stewart, D. R. Molecular transport junctions: asymmetry in inelastic tunneling processes. J. Phys. Chem B 109, 8519–8522 (2005).

    Article  CAS  Google Scholar 

  29. Lambert, D. K. Stark effect of adsorbate vibrations. Solid State Commun. 51, 297–300 (1984).

    Article  CAS  Google Scholar 

  30. Galperin, M., Nitzan, A. & Ratner, M. A. Heat conduction in molecular transport junctions. Phys. Rev. B 75, 155312 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

D.N. and D.R.W. acknowledge support by the Robert A. Welch Foundation (grant C-1636) and the Lockheed Martin Advanced Nanotechnology Center of Excellence at Rice (LANCER). D.N. and D.R.W. acknowledge valuable conversations with M. Di Ventra, M.A. Ratner and A. Nitzan.

Author information

Authors and Affiliations

Authors

Contributions

D.R.W. fabricated the devices, performed all measurements, and analysed the data. D.N. supervised and provided continuous guidance for the experiments and the analysis. D.A.C. synthesized the OPV3 molecules under the supervision of J.M.T. The bulk of the paper was written by D.R.W. and D.N. All authors discussed the results and contributed to manuscript revision.

Corresponding author

Correspondence to Douglas Natelson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2042 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ward, D., Corley, D., Tour, J. et al. Vibrational and electronic heating in nanoscale junctions. Nature Nanotech 6, 33–38 (2011). https://doi.org/10.1038/nnano.2010.240

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.240

This article is cited by

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research