Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Freestanding palladium nanosheets with plasmonic and catalytic properties

Abstract

Ultrathin metal films can exhibit quantum size and surface effects that give rise to unique physical and chemical properties1,2,3,4,5,6,7. Metal films containing just a few layers of atoms can be fabricated on substrates using deposition techniques7, but the production of freestanding ultrathin structures remains a significant challenge. Here we report the facile synthesis of freestanding hexagonal palladium nanosheets that are less than 10 atomic layers thick, using carbon monoxide as a surface confining agent. The as-prepared nanosheets are blue in colour and exhibit a well-defined but tunable surface plasmon resonance peak in the near-infrared region. The combination of photothermal stability and biocompatibility makes palladium nanosheets promising candidates for photothermal therapy. The nanosheets also exhibit electrocatalytic activity for the oxidation of formic acid that is 2.5 times greater than that of commercial palladium black catalyst.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of ultrathin palladium nanosheets synthesized in the presence of PVP and CTAB in DMF.
Figure 2: TEM images of the palladium nanosheets produced under different reaction conditions.
Figure 3: Optical absorption and photothermal properties of palladium nanosheets.
Figure 4: Comparison of electrocatalytic properties of palladium nanosheets and palladium black.

Similar content being viewed by others

References

  1. Smith, A. R., Chao, K. J., Niu, Q. & Shih, C. K. Formation of atomically flat silver films on GaAs with a ‘silver mean’ quasi periodicity. Science 273, 226–228 (1996).

    Article  CAS  Google Scholar 

  2. Zhang, Z. Y., Niu, Q. & Shih, C. K. ‘Electronic growth’ of metallic overlayers on semiconductor substrates. Phys. Rev. Lett. 80, 5381–5384 (1998).

    Article  CAS  Google Scholar 

  3. Paggel, J. J., Miller, T. & Chiang, T. C. Quantum-well states as Fabry–Perot modes in a thin-film electron interferometer. Science 283, 1709–1711 (1999).

    Article  CAS  Google Scholar 

  4. Guo, Y. et al. Superconductivity modulated by quantum size effects. Science 306, 1915–1917 (2004).

    Article  CAS  Google Scholar 

  5. Qin, S. Y., Kim, J., Niu, Q. & Shih, C. K. Superconductivity at the two-dimensional limit. Science 324, 1314–1317 (2009).

    Article  CAS  Google Scholar 

  6. Ozer, M. M. et al. Tuning the quantum stability and superconductivity of ultrathin metal alloys. Science 316, 1594–1597 (2007).

    Article  Google Scholar 

  7. Campbell, C. T. Ultrathin metal films and particles on oxide surfaces: structural, electronic and chemisorptive properties. Surf. Sci. Rep. 27, 1–111 (1997).

    Article  CAS  Google Scholar 

  8. Gordon, R., Sinton, D., Kavanagh, K. L. & Brolo, A. G. A new generation of sensors based on extraordinary optical transmission. Acc. Chem. Res. 41, 1049–1057 (2008).

    Article  CAS  Google Scholar 

  9. Langhammer, C., Yuan, Z., Zoric, I. & Kasemo, B. Plasmonic properties of supported Pt and Pd nanostructures. Nano Lett. 6, 833–838 (2006).

    Article  CAS  Google Scholar 

  10. Lal, S., Clare, S. E. & Halas, N. J. Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc. Chem. Res. 41, 1842–1851 (2008).

    Article  CAS  Google Scholar 

  11. Jain, P. K., Huang, X. H., El-Sayed, I. H. & El-Sayed, M. A. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 41, 1578–1586 (2008).

    Article  CAS  Google Scholar 

  12. Skrabalak, S. E. et al. Gold nanocages: synthesis, properties, and applications. Acc. Chem. Res. 41, 1587–1595 (2008).

    Article  CAS  Google Scholar 

  13. Calander, N. Molecular detection and analysis by using surface plasmon resonances. Curr. Anal. Chem. 2, 203–211 (2006).

    Article  CAS  Google Scholar 

  14. Schaadt, D. M., Feng, B. & Yu, E. T. Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl. Phys. Lett. 86, 063106 (2005).

    Article  Google Scholar 

  15. Krenn, J. R. Nanoparticle waveguides—watching energy transfer. Nature Mater. 2, 210–211 (2003).

    Article  CAS  Google Scholar 

  16. Larsson, E. M., Langhammer, C., Zoric, I. & Kasemo, B. Nanoplasmonic probes of catalytic reactions. Science 326, 1091–1094 (2009).

    Article  CAS  Google Scholar 

  17. Jin, R. C. et al. Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 425, 487–490 (2003).

    Article  CAS  Google Scholar 

  18. Jin, R. C. et al. Photoinduced conversion of silver nanospheres to nanoprisms. Science 294, 1901–1903 (2001).

    Article  CAS  Google Scholar 

  19. Murphy, C. J. et al. Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J. Phys. Chem. B 109, 13857–13870 (2005).

    Article  CAS  Google Scholar 

  20. Jain, P. K., Huang, X. H., El-Sayed, I. H. & El-Sayad, M. A. Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics 2, 107–118 (2007).

    Article  CAS  Google Scholar 

  21. Link, S. et al. Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence. J. Phys. Chem. A 103, 1165–1170 (1999).

    Article  CAS  Google Scholar 

  22. Yavuz, M. S. et al. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nature Mater. 8, 935–939 (2009).

    Article  CAS  Google Scholar 

  23. Xia, Y., Xiong, Y. J., Lim, B. & Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem. Int. Ed. 48, 60–103 (2009).

    Article  CAS  Google Scholar 

  24. Xiong, Y. J. & Xia, Y. N. Shape-controlled synthesis of metal nanostructures: the case of palladium. Adv. Mater. 19, 3385–3391 (2007).

    Article  CAS  Google Scholar 

  25. Germain, V. et al. Stacking faults in formation of silver nanodisks. J. Phys. Chem. B 107, 8717–8720 (2003).

    Article  CAS  Google Scholar 

  26. Hara, M., Linke, U. & Wandlowski, T. Preparation and electrochemical characterization of palladium single crystal electrodes in 0.1 M H2SO4 and HClO4 part I. Low-index phases. Electrochim. Acta 52, 5733–5748 (2007).

    Article  CAS  Google Scholar 

  27. Schlotterbeck, U. et al. Shape-selective synthesis of palladium nanoparticles stabilized by highly branched amphiphilic polymers. Adv. Funct. Mater. 14, 999–1004 (2004).

    Article  CAS  Google Scholar 

  28. Siril, P. F. et al. Synthesis of ultrathin hexagonal palladium nanosheets. Chem. Mater. 21, 5170–5174 (2009).

    Article  CAS  Google Scholar 

  29. Xiong, Y. J. et al. Synthesis and mechanistic study of palladium nanobars and nanorods. J. Am. Chem. Soc. 129, 3665–3675 (2007).

    Article  CAS  Google Scholar 

  30. Orendorff, C. J. & Murphy, C. J. Quantitation of metal content in the silver-assisted growth of gold nanorods. J. Phys. Chem. B 110, 3990–3994 (2006).

    Article  CAS  Google Scholar 

  31. Huang, X. H., El-Sayed, I. H., Qian, W. & El-Sayed, M. A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128, 2115–2120 (2006).

    Article  CAS  Google Scholar 

  32. Hirsch, L. R. et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl Acad. Sci. USA 100, 13549–13554 (2003).

    Article  CAS  Google Scholar 

  33. Chen, J. Y. et al. Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett. 7, 1318–1322 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge helpful discussions with L.S. Zheng, Z.Q. Tian, G.D. Stucky, Z.X. Xie and B.W. Mao. The authors also thank S.W. Boettcher and Z.P. Zheng for suggestions and editing of the English. This work was supported by the NSF of China (20925103, 20871100, 20721001 and 20703032), MOST of China (2009CB930703, 2011CB932403), the Fok Ying Tung Education Foundation (121011), NSF of Fujian for a Distinguished Young Investigator Grant (2009J06005) and the Key Scientific Project of Fujian Province (2009HZ0002-1).

Author information

Authors and Affiliations

Authors

Contributions

X.Q.H. performed the experiments, collected and analysed the data, and wrote the paper. S.H.T. carried out the apoptosis assay and in vitro photothermal therapy tests. X.L.M. was responsible for AFM analysis. Y.D. and G.X.C. helped with synthesis of the materials. Z.Y.Z. helped with the electrochemical and FTIR measurements. F.X.R. and Z.L.Y. carried out the calculations of extinction spectra. N.F.Z. conceived the experiments, planned the synthesis, analysed the results and wrote the paper.

Corresponding author

Correspondence to Nanfeng Zheng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3840 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, X., Tang, S., Mu, X. et al. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nature Nanotech 6, 28–32 (2011). https://doi.org/10.1038/nnano.2010.235

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.235

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing