Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Highly conductive, printable and stretchable composite films of carbon nanotubes and silver

Abstract

Conductive films that are both stretchable and flexible could have applications in electronic devices1,2, sensors3,4, actuators5 and speakers6. A substantial amount of research has been carried out on conductive polymer composites7, metal electrode-integrated rubber substrates8,9,10 and materials based on carbon nanotubes and graphene1,2,11,12,13. Here we present highly conductive, printable and stretchable hybrid composites composed of micrometre-sized silver flakes and multiwalled carbon nanotubes decorated with self-assembled silver nanoparticles. The nanotubes were used as one-dimensional, flexible and conductive scaffolds to construct effective electrical networks among the silver flakes. The nanocomposites, which included polyvinylidenefluoride copolymer, were created with a hot-rolling technique, and the maximum conductivities of the hybrid silver–nanotube composites were 5,710 S cm−1 at 0% strain and 20 S cm−1 at 140% strain, at which point the film ruptured. Three-dimensional percolation theory reveals that Poisson's ratio for the composite is a key parameter in determining how the conductivity changes upon stretching.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the preparation of a hybrid Ag–MWNT composite film.
Figure 2: Hybrid Ag–MWNT composite films.
Figure 3: Conductivity and stretchability of various hybrid Ag–MWNT films.

Similar content being viewed by others

References

  1. Sekitani, T. et al. A rubberlike stretchable active matrix using elastic conductors. Science 321, 1468–1472 (2008).

    Article  CAS  Google Scholar 

  2. Kim, K. S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009).

    Article  CAS  Google Scholar 

  3. Someya, T. et al. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl Acad. Sci. USA 101, 9966–9970 (2004).

    Article  CAS  Google Scholar 

  4. Lee, B. Y. et al. Scalable assembly method of vertically-suspended and stretched carbon nanotube network devices for nanoscale electro-mechanical sensing components. Nano Lett. 8, 4483–4487 (2008).

    Article  CAS  Google Scholar 

  5. Sekitani, T. et al. A large-area wireless power-transmission sheet using printed organic transistors and plastic MEMS switches. Nature Mater. 6, 413–417 (2007).

    Article  CAS  Google Scholar 

  6. Xiao, L. et al. Flexible, stretchable, transparent carbon nanotube thin film loudspeakers. Nano Lett. 8, 4539–4545 (2008).

    Article  CAS  Google Scholar 

  7. Hansen, T. S., West, K., Hassager, O. & Larsen, N. B. Highly stretchable and conductive polymer material made from poly(3,4-ethylenedioxythiophene) and polyurethane elastomers. Adv. Funct. Mater. 17, 3069–3073 (2007).

    Article  CAS  Google Scholar 

  8. Khang, D. Y., Jiang, H. Q., Huang, Y. & Rogers, J. A. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311, 208–212 (2006).

    Article  CAS  Google Scholar 

  9. Sun, Y. G. et al. Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nature Nanotech. 1, 201–207 (2006).

    Article  CAS  Google Scholar 

  10. Kim, D. H. et al. Stretchable and foldable silicon integrated circuits. Science 320, 507–511 (2008).

    Article  CAS  Google Scholar 

  11. Sekitani, T. et al. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nature Mater. 8, 494–499 (2009).

    Article  CAS  Google Scholar 

  12. Shin, M. K. et al. Elastomeric conductive composites based on carbon nanotube forests. Adv. Mater. 22, 2663–2667 (2010).

    Article  CAS  Google Scholar 

  13. Hu, L. et al. Stretchable, porous, and conductive energy textiles. Nano Lett. 10, 708–714 (2010).

    Article  CAS  Google Scholar 

  14. Yang, D-Q., Hennequin, B. & Sacher, E. XPS demonstration of ππ interaction between benzyl mercaptan and multiwalled carbon nanotubes and their use in the adhesion of Pt nanoparticles. Chem. Mater. 18, 5033–5038 (2006).

    Article  CAS  Google Scholar 

  15. Yang, G-W. et al. Controllable deposition of Ag nanoparticles on carbon nanotubes as a catalyst for hydrazine oxidation. Carbon 46, 747–752 (2008).

    Article  CAS  Google Scholar 

  16. Oh, Y., Suh, D., Kim, Y-J., Han, C.-S. & Baik, S. Transparent conductive film fabrication using intercalating silver nanoparticles within carbon nanotube layers. J. Nanosci. Nanotech. (in the press).

  17. Oh, Y., Chun, K-Y., Lee, E., Kim, Y.-J. & Baik, S. Nano-silver particles assembled on one-dimensional nanotube scaffolds for highly conductive printable silver/epoxy composites. J. Mater. Chem. 20, 3579–3582 (2010).

    Article  CAS  Google Scholar 

  18. Mukai, K. et al. High performance fully plastic actuator based on ionic-liquid-based bucky gel. Electrochim. Acta 53, 5555–5562 (2008).

    Article  CAS  Google Scholar 

  19. Kim, D-W., Sivakkumar, S. R., MacFalane, D. R., Forsyth, M. & Sun, Y-K. Cycling performance of lithium metal polymer cells assembled with ionic liquid and poly(3-methyl thiophene)/carbon nanotube composite cathode. J. Power Sources 180, 591–596 (2008).

    Article  CAS  Google Scholar 

  20. Price, B. K., Hudson, J. L. & Tour, J. M. Green chemical functionalization of single-walled carbon nanotubes in ionic liquids. J. Am. Chem. Soc. 127, 14867–14870 (2005).

    Article  CAS  Google Scholar 

  21. Jarosik, A., Krajewski, S. R., Lewandowski, A. & Radzimski, P. Conductivity of ionic liquids in mixtures. J. Mol. Liq. 123, 43–50 (2006).

    Article  CAS  Google Scholar 

  22. Hayamizu, K., Aihara, Y., Nakagawa, H., Nukuda, T. & Price, W. S. Ionic conduction and ion diffusion in binary room-temperature ionic liquids composed of [emim][BF4] and LiBF4 . J. Phys. Chem. B. 108, 19527–19532 (2004).

    Article  CAS  Google Scholar 

  23. Oh, Y. et al. Silver-plated carbon nanotubes for silver/conducting polymer composites. Nanotechnology 19, 495602 (2008).

    Article  Google Scholar 

  24. Li, J. & Kim, J. Percolation threshold of conducting polymer composites containing 3D randomly distributed graphite nanoplatelets. Comp. Sci. Tech. 67, 2114–2120 (2007).

    Article  CAS  Google Scholar 

  25. Shigley, J. E. & Mischeke, C. R. Mechanical Engineering Design 130–131 (McGraw-Hill, 2001).

    Google Scholar 

  26. Nguyen, H. C. et al. The effects of additives on the actuating performances of a dielectric elastomer actuator. Smart Mater. Struct. 18, 015006 (2009).

    Article  Google Scholar 

  27. Lacour, S. P., Jones, J. E., Wagner, S., Li, T. & Suo, Z. Stretchable interconnects for elastic electronic surfaces. Proc. IEEE 93, 1459–1467 (2005).

    Article  CAS  Google Scholar 

  28. Pavlygo, T. M., Serdyuk, G. G., Svistun, L. I., Plomod'yalo, R. L. & Plomod'yalo, L. G. Hot pressing technology to produce wear-resistant P/M structural materials with dispersed solid inclusions. Powder Metall. Met. Ceram. 44, 341–346 (2005).

    Article  CAS  Google Scholar 

  29. Moromoto, Y., Hayashi, T. & Takei, T. Mechanical behavior of powders during compaction in a mold with variable cross sections. Int. J. Powder Metall. Powder Tech. 18, 129–145 (1982).

    Google Scholar 

  30. Gethin, D. T., Tran, D. V., Lewis, R. W. & Ariffin, A. K. An investigation of powder compaction processes. Int. J. Powder Metall. 30, 385–398 (1994).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Science Research Programme (grant no. 2009-0090017) through the National Research Foundation of Korea (NRF), the Center for Nanoscale Mechatronics & Manufacturing (grant no. 2009K000160) which is a 21st-Century Frontier Research programme, and the World Class University programme (grant no. R31-2008-000-10029-0) funded by the Ministry of Education, Science and Technology, Korea.

Author information

Authors and Affiliations

Authors

Contributions

K-Y.C., Y.O. and S.B. conceived and designed the experiments, which were carried out by K-Y.C., Y.O. and J.R. H.R.C. provided nitrile butadiene rubber. Y-J.K. designed the finite element modelling, and J-H.A. designed the stretching and light-emitting diode experiments. K-Y.C., Y.O. and S.B. wrote the paper. All authors contributed to data analysis and scientific discussion.

Corresponding author

Correspondence to Seunghyun Baik.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1166 kb)

Supplementary information

Supplementary movie (WMV 2010 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chun, KY., Oh, Y., Rho, J. et al. Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nature Nanotech 5, 853–857 (2010). https://doi.org/10.1038/nnano.2010.232

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.232

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing