Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The emerging field of RNA nanotechnology

Abstract

Like DNA, RNA can be designed and manipulated to produce a variety of different nanostructures. Moreover, RNA has a flexible structure and possesses catalytic functions that are similar to proteins. Although RNA nanotechnology resembles DNA nanotechnology in many ways, the base-pairing rules for constructing nanoparticles are different. The large variety of loops and motifs found in RNA allows it to fold into numerous complicated structures, and this diversity provides a platform for identifying viable building blocks for various applications. The thermal stability of RNA also allows the production of multivalent nanostructures with defined stoichiometry. Here we review techniques for constructing RNA nanoparticles from different building blocks, we describe the distinct attributes of RNA inside the body, and discuss potential applications of RNA nanostructures in medicine. We also offer some perspectives on the yield and cost of RNA production.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Approaches to RNA nanotechnology.
Figure 2: Comparison of self-assembled DNA and RNA nanoparticles.
Figure 3: Summary of different techniques for constructing RNA nanoparticles.
Figure 4: Applications of RNA nanotechnology.

Similar content being viewed by others

References

  1. Lin, C., Liu, Y. & Yan, H. Designer DNA nanoarchitectures. Biochemistry 48, 1663–1674 (2009).

    CAS  Google Scholar 

  2. Aldaye, F. A., Palmer, A. L. & Sleiman, H. F. Assembling materials with DNA as the guide. Science 321, 1795–1799 (2008).

    Article  CAS  Google Scholar 

  3. Seeman, N. C. Nanomaterials based on DNA. Annu. Rev. Biochem. 79, 65–87 (2010).

    CAS  Google Scholar 

  4. Moll, D. et al. S-layer-streptavidin fusion proteins as template for nanopatterned molecular arrays. Proc. Natl Acad. Sci. USA 99, 14646–14651 (2002).

    CAS  Google Scholar 

  5. Cui, H., Muraoka, T., Cheetham, A. G. & Stupp, S. I. Self-assembly of giant peptide nanobelts. Nano. Lett. 9, 945–951 (2009).

    CAS  Google Scholar 

  6. Adler-Abramovich, L. et al. Self-assembled arrays of peptide nanotubes by vapour deposition. Nature Nanotech. 4, 849–854 (2009).

    CAS  Google Scholar 

  7. Knowles, T. P. et al. Nanostructured films from hierarchical self-assembly of amyloidogenic proteins. Nature Nanotech. 5, 204–207 (2010).

    CAS  Google Scholar 

  8. Guo, P. et al. Inter-RNA interaction of phage phi29 pRNA to form a hexameric complex for viral DNA transportation. Mol. Cell 2, 149–155 (1998).

    CAS  Google Scholar 

  9. Zhang, F. et al. Function of hexameric RNA in packaging of bacteriophage phi29 DNA in vitro. Mol. Cell 2, 141–147 (1998).

    CAS  Google Scholar 

  10. Jaeger, L. & Leontis, N. B. Tecto-RNA: One dimensional self-assembly through tertiary interactions. Angew. Chem. Int. Ed. 39, 2521–2524 (2000).

    CAS  Google Scholar 

  11. Jaeger, L., Westhof, E. & Leontis, N. B. TectoRNA: modular assembly units for the construction of RNA nano-objects. Nucleic Acids Res. 29, 455–463 (2001).

    CAS  Google Scholar 

  12. Shu, D. et al. Bottom-up assembly of RNA arrays and superstructures as potential parts in nanotechnology. Nano Lett. 4, 1717–1723 (2004).

    CAS  Google Scholar 

  13. Chworos, A. et al. Building programmable jigsaw puzzles with RNA. Science 306, 2068–2072 (2004).

    CAS  Google Scholar 

  14. Guo, P. RNA nanotechnology: Engineering, assembly and applications in detection, gene delivery and therapy. J. Nanosci. Nanotechnol. 5, 1964–1982 (2005).

    Article  CAS  Google Scholar 

  15. Jaeger, L. & Chworos, A. The architectonics of programmable RNA and DNA nanostructures. Curr. Opin. Struct. Biol. 16, 531–543 (2006).

    CAS  Google Scholar 

  16. Ikawa, Y., Tsuda, K., Matsumura, S. & Inoue, T. De novo synthesis and development of an RNA enzyme. Proc. Natl Acad. Sci. USA 101, 13750–13755 (2004).

    CAS  Google Scholar 

  17. Matsumura, S. et al. Coordinated control of a designed trans-acting ligase ribozyme by a loop-receptor interaction. FEBS Lett. 583, 2819–2826 (2009).

    CAS  Google Scholar 

  18. Leontis, N. B., Lescoute, A. & Westhof, E. The building blocks and motifs of RNA architecture. Curr. Opin. Struct. Biol. 16, 279–287 (2006).

    CAS  Google Scholar 

  19. Schroeder, K. T., McPhee, S. A., Ouellet, J. & Lilley, D. M. A structural database for k-turn motifs in RNA. RNA 16, 1463–1468 (2010).

    CAS  Google Scholar 

  20. Li, X., Horiya, S. & Harada, K. An efficient thermally induced RNA conformational switch as a framework for the functionalization of RNA nanostructures. J. Am. Chem. Soc. 128, 4035–4040 (2006).

    CAS  Google Scholar 

  21. Nasalean, L., Baudrey, S., Leontis, N. B. & Jaeger, L. Controlling RNA self-assembly to form filaments. Nucleic Acids Res. 34, 1381–1392 (2006).

    CAS  Google Scholar 

  22. Liu, B., Baudrey, S., Jaeger, L. & Bazan, G. C. Characterization of tectoRNA assembly with cationic conjugated polymers. J. Am. Chem. Soc. 126, 4076–4077 (2004).

    CAS  Google Scholar 

  23. Cayrol, B. et al. A nanostructure made of a bacterial noncoding RNA. J. Am. Chem. Soc. 131, 17270–17276 (2009).

    CAS  Google Scholar 

  24. Geary, C., Chworos, A. & Jaeger, L. Promoting RNA helical stacking via A-minor junctions. Nucleic Acids Res. 10.1093/nar/gkq748 (2010).

  25. Sugimoto, N. et al. Thermodynamic parameters to predict stability of RNA/DNA hybrid duplexes. Biochemistry 34, 11211–11216 (1995).

    CAS  Google Scholar 

  26. Searle, M. S. & Williams, D. H. On the stability of nucleic acid structures in solution: enthalpy-entropy compensations, internal rotations and reversibility. Nucleic Acids Res. 21, 2051–2056 (1993).

    CAS  Google Scholar 

  27. Kitamura, A. et al. Analysis of intermolecular base pair formation of prohead RNA of the phage phi29 DNA packaging motor using NMR spectroscopy. Nucleic Acids Res. 36, 839–848 (2008).

    CAS  Google Scholar 

  28. Chen, C., Zhang, C. & Guo, P. Sequence requirement for hand-in-hand interaction in formation of pRNA dimers and hexamers to gear phi29 DNA translocation motor. RNA 5, 805–818 (1999).

    CAS  Google Scholar 

  29. Severcan, I. et al. Square-shaped RNA particles from different RNA folds. Nano Lett. 9, 1270–1277 (2009).

    CAS  Google Scholar 

  30. Severcan, I. et al. A polyhedron made of tRNAs. Nature Chem. 2, 772–779 (2010).

    CAS  Google Scholar 

  31. Hansma, H. G., Oroudjev, E., Baudrey, S. & Jaeger, L. TectoRNA and 'kissing-loop' RNA: atomic force microscopy of self-assembling RNA structures. J. Microsc. 212, 273–279 (2003).

    CAS  Google Scholar 

  32. Lee, R. J., Wang, S. & Low, P. S. Measurement of endosome pH following folate receptor-mediated endocytosis. Biochim. Biophys. Acta 1312, 237–242 (1996).

    Google Scholar 

  33. Pogocki, D. & Schoneich, C. Chemical stability of nucleic acid-derived drugs. J. Pharm. Sci. 89, 443–456 (2000).

    CAS  Google Scholar 

  34. Laurenti, E. et al. Inducible gene and shRNA expression in resident hematopoietic stem cells in vivo. Stem Cells 28, 1390–1398 (2010).

    CAS  Google Scholar 

  35. Hoeprich, S. et al. Bacterial virus phi29 pRNA as a hammerhead ribozyme escort to destroy hepatitis B virus. Gene Ther. 10, 1258–1267 (2003).

    CAS  Google Scholar 

  36. Chang, K. Y. & Tinoco, I. Jr Characterization of a “kissing” hairpin complex derived from the human immunodeficiency virus genome. Proc. Natl Acad. Sci. USA 91, 8705–8709 (1994).

    CAS  Google Scholar 

  37. Bindewald, E. et al. RNAJunction: a database of RNA junctions and kissing loops for three-dimensional structural analysis and nanodesign. Nucleic Acids Res. 36, D392–D397 (2008).

    CAS  Google Scholar 

  38. Wagner, C., Ehresmann, C., Ehresmann, B. & Brunel, C. Mechanism of dimerization of bicoid mRNA: initiation and stabilization. J. Biol. Chem. 279, 4560–4569 (2004).

    CAS  Google Scholar 

  39. Chen, C., Sheng, S., Shao, Z. & Guo, P. A dimer as a building block in assembling RNA: A hexamer that gears bacterial virus phi29 DNA-translocating machinery. J. Biol. Chem. 275, 17510–17516 (2000).

    CAS  Google Scholar 

  40. Ponchon, L., Beauvais, G., Nonin-Lecomte, S. & Dardel, F. A generic protocol for the expression and purification of recombinant RNA in Escherichia coli using a tRNA scaffold. Nature Protoc. 4, 947–959 (2009).

    CAS  Google Scholar 

  41. Kuwabara, T. et al. Formation of a catalytically active dimer by tRNA-driven short ribozymes. Nature Biotechnol. 16, 961–965 (1998).

    CAS  Google Scholar 

  42. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    CAS  Google Scholar 

  43. Li, H., Li, W. X. & Ding, S. W. Induction and suppression of RNA silencing by an animal virus. Science 296, 1319–1321 (2002).

    CAS  Google Scholar 

  44. Breaker, R. R. Complex riboswitches. Science 319, 1795–1797 (2008).

    CAS  Google Scholar 

  45. Fabian, M. R., Sonenberg, N. & Filipowicz, W. Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem. 79, 351–379 (2010).

    CAS  Google Scholar 

  46. Zhang, C. Novel functions for small RNA molecules. Curr. Opin. Mol. Ther. 11, 641–651 (2009).

    CAS  Google Scholar 

  47. Marvin, M. C. & Engelke, D. R. Broadening the mission of an RNA enzyme. J. Cell Biochem. 108, 1244–1251 (2009).

    CAS  Google Scholar 

  48. Benenson, Y. RNA-based computation in live cells. Curr. Opin. Biotechnol. 20, 471–478 (2009).

    CAS  Google Scholar 

  49. Shlyakhtenko, L. S. et al. Silatrane-based surface chemistry for immobilization of DNA, protein-DNA complexes and other biological materials. Ultramicroscopy 97, 279–287 (2003).

    CAS  Google Scholar 

  50. Guo, S., Tschammer, N., Mohammed, S. & Guo, P. Specific delivery of therapeutic RNAs to cancer cells via the dimerization mechanism of phi29 motor pRNA. Hum. Gene Ther. 16, 1097–1109 (2005).

    CAS  Google Scholar 

  51. Khaled, A., Guo, S., Li, F. & Guo, P. Controllable self-assembly of nanoparticles for specific delivery of multiple therapeutic molecules to cancer cells using RNA nanotechnology. Nano Lett. 5, 1797–1808 (2005).

    CAS  Google Scholar 

  52. Shu, D., Huang, L., Hoeprich, S. & Guo, P. Construction of phi29 DNA-packaging RNA (pRNA) monomers, dimers and trimers with variable sizes and shapes as potential parts for nano-devices. J. Nanosci. Nanotechnol. 3, 295–302 (2003).

    CAS  Google Scholar 

  53. Turner, R. & Tijan, R. Leucine repeats and an adjacent DNA binding domain mediate the formation of functional c-Fos and c-Jun heterodimers. Science 243, 1689–1694 (1989).

    CAS  Google Scholar 

  54. Liu, D. et al. Tensegrity: construction of rigid DNA triangles with flexible four-arm DNA junctions. J. Am. Chem. Soc. 126, 2324–2325 (2004).

    CAS  Google Scholar 

  55. Rothemund, P. W., Papadakis, N. & Winfree, E. Algorithmic self-assembly of DNA Sierpinski triangles. PLoS. Biol. 2, e424 (2004).

    Google Scholar 

  56. Park, S. H. et al. Three-helix bundle DNA tiles self-assemble into 2D lattice or 1D templates for silver nanowires. Nano Lett. 5, 693–696 (2005).

    CAS  Google Scholar 

  57. Weizmann, Y. et al. A polycatenated DNA scaffold for the one-step assembly of hierarchical nanostructures. Proc. Natl Acad. Sci. USA 105, 5289–5294 (2008).

    CAS  Google Scholar 

  58. Aldaye, F. A. & Sleiman, H. F. Modular access to structurally switchable 3D discrete DNA assemblies. J. Am. Chem. Soc. 129, 13376–13377 (2007).

    CAS  Google Scholar 

  59. Zheng, J. et al. From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature 461, 74–77 (2009).

    CAS  Google Scholar 

  60. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    CAS  Google Scholar 

  61. Andersen, E. S. et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459, 73–76 (2009).

    CAS  Google Scholar 

  62. Ke, Y. G. et al. Self-assembled water-soluble nucleic acid probe tiles for label-free RNA hybridization assays. Science 319, 180–183 (2008).

    CAS  Google Scholar 

  63. Douglas, S. M., Chou, J. J. & Shih, W. M. DNA-nanotube-induced alignment of membrane proteins for NMR structure determination. Proc. Natl Acad. Sci. USA 104, 6644–6648 (2007).

    CAS  Google Scholar 

  64. Endo, M., Seeman, N. C. & Majima, T. DNA tube structures controlled by a four-way-branched DNA connector. Angew. Chem. Int. Ed. Engl. 44, 6074–6077 (2005).

    CAS  Google Scholar 

  65. Tanaka, K. et al. A discrete self-assembled metal array in artificial DNA. Science 299, 1212–1213 (2003).

    CAS  Google Scholar 

  66. Yurke, B. et al. A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000).

    CAS  Google Scholar 

  67. Lin, C. et al. In vivo cloning of artificial DNA nanostructures. Proc. Natl Acad. Sci. USA 105, 17626–17631 (2008).

    CAS  Google Scholar 

  68. Eckardt, L. H. et al. DNA nanotechnology: Chemical copying of connectivity. Nature 420, 286 (2002).

    CAS  Google Scholar 

  69. Endo, M. et al. Programmed-assembly system using DNA jigsaw pieces. Chemistry 16, 5362–5368 (2010).

    CAS  Google Scholar 

  70. Dietz, H., Douglas, S. M. & Shih, W. M. Folding DNA into twisted and curved nanoscale shapes. Science 325, 725–730 (2009).

    CAS  Google Scholar 

  71. Cherny, D. I., Eperon, I. C. & Bagshaw, C. R. Probing complexes with single fluorophores: factors contributing to dispersion of FRET in DNA/RNA duplexes. Eur. Biophys. J. 38, 395–405 (2009).

    CAS  Google Scholar 

  72. Shapiro, B. A. Computational design strategies for RNA nanostructures. J. Biomol. Struct. Dyn. 26, 820 (2009).

    Google Scholar 

  73. Yingling, Y. G. & Shapiro, B. A. Computational design of an RNA hexagonal nanoring and an RNA nanotube. Nano Lett. 7, 2328–2334 (2007).

    CAS  Google Scholar 

  74. Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003).

    CAS  Google Scholar 

  75. Markham, N. R. & Zuker, M. UNAFold: software for nucleic acid folding and hybridization. Methods Mol. Biol. 453, 3–31 (2008).

    CAS  Google Scholar 

  76. Bindewald, E. et al. Computational strategies for the automated design of RNA nanoscale structures from building blocks using NanoTiler. J. Mol. Graph. Model. 27, 299–308 (2008).

    CAS  Google Scholar 

  77. Afonin, K. A. et al. In vitro assembly of cubic RNA-based scaffolds designed in silico. Nature Nanotech. 5, 676–682 (2010).

    CAS  Google Scholar 

  78. Chakraborty, S., Modi, S. & Krishnan, Y. The RNA2-PNA2 hybrid i-motif-a novel RNA-based building block. Chem. Commun. 70–72 (2008).

  79. Afonin, K. A., Cieply, D. J. & Leontis, N. B. Specific RNA self-assembly with minimal paranemic motifs. J. Am. Chem. Soc. 130, 93–102 (2008).

    CAS  Google Scholar 

  80. Lescoute, A. & Westhof, E. Topology of three-way junctions in folded RNAs. RNA 12, 83–93 (2006).

    CAS  Google Scholar 

  81. Ouellet, J. et al. Structure of the three-way helical junction of the hepatitis C virus IRES element. RNA 16, 1597–1609 (2010).

    CAS  Google Scholar 

  82. de la, P. M., Dufour, D. & Gallego, J. Three-way RNA junctions with remote tertiary contacts: a recurrent and highly versatile fold. RNA 15, 1949–1964 (2009).

    Google Scholar 

  83. Griffiths-Jones, S. et al. Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res. 33, D121–D124 (2005).

    CAS  Google Scholar 

  84. Abraham, M., Dror, O., Nussinov, R. & Wolfson, H. J. Analysis and classification of RNA tertiary structures. RNA 14, 2274–2289 (2008).

    CAS  Google Scholar 

  85. Guo, P., Erickson, S. & Anderson, D. A small viral RNA is required for in vitro packaging of bacteriophage phi29 DNA. Science 236, 690–694 (1987).

    CAS  Google Scholar 

  86. Xiao, F., Demeler, B. & Guo, P. Assembly mechanism of the sixty-subunit nanoparticles via interaction of RNA with the reengineered protein connector of phi29 DNA-packaging motor. ACS Nano 4, 3293–3301 (2010).

    CAS  Google Scholar 

  87. Shu, D., Zhang, H., Jin, J. & Guo, P. Counting of six pRNAs of phi29 DNA-packaging motor with customized single molecule dual-view system. EMBO J. 26, 527–537 (2007).

    CAS  Google Scholar 

  88. Woodson, S. A. Compact intermediates in RNA folding. Annu. Rev. Biophys. 39, 61–77 (2010).

    CAS  Google Scholar 

  89. Gugliotti, L. A., Feldheim, D. L. & Eaton, B. E. RNA-mediated metal-metal bond formation in the synthesis of hexagonal palladium nanoparticles. Science 304, 850–852 (2004).

    CAS  Google Scholar 

  90. Koyfman, A. Y. et al. Controlled spacing of cationic gold nanoparticles by nanocrown RNA. J. Am. Chem. Soc. 127, 11886–11887 (2005).

    CAS  Google Scholar 

  91. Oguro, A., Ohtsu, T. & Nakamura, Y. An aptamer-based biosensor for mammalian initiation factor eukaryotic initiation factor 4A. Anal. Biochem. 388, 102–107 (2009).

    CAS  Google Scholar 

  92. Mi, J. et al. In vivo selection of tumor-targeting RNA motifs. Nature Chem. Biol. 6, 22–24 (2010).

    CAS  Google Scholar 

  93. Liu, Y. et al. Targeting hypoxia-inducible factor-1alpha with Tf-PEI-shRNA complex via transferring receptor-mediated endocytosis inhibits melanoma growth. Mol. Ther. 17, 269–277 (2009).

    CAS  Google Scholar 

  94. Kumar, P. et al. Transvascular delivery of small interfering RNA to the central nervous system. Nature 448, 39–43 (2007).

    CAS  Google Scholar 

  95. Kruger, K. et al. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31, 147–157 (1982).

    CAS  Google Scholar 

  96. Guerrier-Takada, C. et al. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35, 849–857 (1983).

    CAS  Google Scholar 

  97. Ellington, A. D. & Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990).

    CAS  Google Scholar 

  98. Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA ploymerase. Science 249, 505–510 (1990).

    CAS  Google Scholar 

  99. Ellington, A. D. Back to the future of nucleic acid self-amplification. Nature Chem. Biol. 5, 200–201 (2009).

    CAS  Google Scholar 

  100. Zhou, J., Li, H., Zaia, J. & Rossi, J. J. Novel dual inhibitory function aptamer-siRNA delivery system for HIV-1 therapy. Mol. Ther. 16, 1481–1489 (2008).

    CAS  Google Scholar 

  101. Bunka, D. H. et al. Production and characterization of RNA aptamers specific for amyloid fibril epitopes. J. Biol. Chem. 282, 34500–34509 (2007).

    CAS  Google Scholar 

  102. Sudarsan, N. et al. Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321, 411–413 (2008).

    CAS  Google Scholar 

  103. Ogawa, A. & Maeda, M. An artificial aptazyme-based riboswitch and its cascading system in E. coli. Chembiochem 9, 206–209 (2008).

    CAS  Google Scholar 

  104. Shahbabian, K., Jamalli, A., Zig, L. & Putzer, H. RNase Y, a novel endoribonuclease, initiates riboswitch turnover in Bacillus subtilis. EMBO J. 28, 3523–3533 (2009).

    CAS  Google Scholar 

  105. Prabha, S., Zhou, W. Z., Panyam, J. & Labhasetwar, V. Size-dependency of nanoparticle-mediated gene transfection: studies with fractionated nanoparticles. Int. J. Pharm. 244, 105–115 (2002).

    CAS  Google Scholar 

  106. Guo, S., Huang, F. & Guo, P. Construction of folate-conjugated pRNA of bacteriophage phi29 DNA packaging motor for delivery of chimeric siRNA to nasopharyngeal carcinoma cells. Gene Ther. 13, 814–820 (2006).

    CAS  Google Scholar 

  107. Zhang, H. M. et al. Target delivery of anti-coxsachievirus siRNAs using ligand-conjugated packaging RNAs. Antivir. Res. 83, 307–316 (2009).

    CAS  Google Scholar 

  108. Watts, J. K., Deleavey, G. F. & Damha, M. J. Chemically modified siRNA: tools and applications. Drug Discov. Today 13, 842–855 (2008).

    CAS  Google Scholar 

  109. Madhuri, V. & Kumar, V. A. Design, synthesis and DNA/RNA binding studies of nucleic acids comprising stereoregular and acyclic polycarbamate backbone: polycarbamate nucleic acids (PCNA). Org. Biomol. Chem. 8, 3734–3741 (2010).

    CAS  Google Scholar 

  110. Mathe, C. & Perigaud, C. Recent approaches in the synthesis of conformationally restricted nucleoside analogues. Eur. J. Org. Chem. 1489–1505 (2008).

  111. Patra, A. & Richert, C. High fidelity base pairing at the 3′-terminus. J. Am. Chem. Soc. 131, 12671–12681 (2009).

    CAS  Google Scholar 

  112. Liu, J. et al. Fabrication of stable and RNase-resistant RNA nanoparticles active in gearing the nanomotors for viral DNA packaging. ACS Nano (in the press).

  113. Efimov, V. A., Fediunin, S. V. & Chakhmakhcheva, O. G. Cross-linked nucleic acids: formation, structure, and biological function. Bioorg. Khim. 36, 56–80 (2010).

    CAS  Google Scholar 

  114. Song, Z. et al. Synthesis and oxidation-induced DNA cross-linking capabilities of bis(catechol) quaternary ammonium derivatives. Chemistry 14, 5751–5754 (2008).

    CAS  Google Scholar 

  115. Stengel, G., Urban, M., Purse, B. W. & Kuchta, R. D. Incorporation of the fluorescent ribonucleotide analogue tCTP by T7 RNA polymerase. Anal. Chem. 82, 1082–1089 (2010).

    CAS  Google Scholar 

  116. Solomatin, S. & Herschlag, D. Methods of site-specific labeling of RNA with fluorescent dyes. Methods Enzymol. 469, 47–68 (2009).

    CAS  Google Scholar 

  117. Lavergne, T., Bertrand, J. R., Vasseur, J. J. & Debart, F. A base-labile group for 2′-OH protection of ribonucleosides: a major challenge for RNA synthesis. Chemistry 14, 9135–9138 (2008).

    CAS  Google Scholar 

  118. Hoeprich, S. & Guo, P. Computer modeling of three-dimensional structure of DNA-packaging RNA(pRNA) monomer, dimer, and hexamer of phi29 DNA packaging motor. J. Biol. Chem. 277, 20794–20803 (2002).

    CAS  Google Scholar 

Download references

Acknowledgements

This review is in part inspired by the 4th Annual Cancer Nanotechnology Think Tank: RNA Nanobiology (http://web.ncifcrf.gov/events/nanobiology/2009/) and it is an extension of the author's presentation at this think tank and his opening remark at the 2010 International Conference of RNA Nanotechnology and Therapeutics (http://www.eng.uc.edu/nanomedicine/RNA2010/). The author thanks John Rossi, Peter Stockley, Andrew Ellington, Shane Fimbel, Jason Lu, Farzin Haque, Anne Vonderheide, Randall Reif, Chaoping Chen, Mathieu Cinier and Feng Xiao for insightful comments; and Chad Schwartz, Yi Shu and Jia Geng for their assistance in preparation of this manuscript. The work in the author's laboratory is supported by National Institutes of Health (NIH) grants GM059944, EB003730 and NIH Nanomedicine Development Center entitled 'Phi29 DNA Packaging Motor for Nanomedicine' (PN2 EY018230) through the NIH Roadmap for Medical Research, as well as contract from Kylin Therapeutics, Inc., of which the author is a cofounder.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peixuan Guo.

Ethics declarations

Competing interests

Peixuan Guo is a cofounder of Kylin Therapeutics, Inc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, P. The emerging field of RNA nanotechnology. Nature Nanotech 5, 833–842 (2010). https://doi.org/10.1038/nnano.2010.231

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.231

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing