Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Magnetoelectric coupling at metal surfaces


Magnetoelectric coupling allows the magnetic state of a material to be changed by an applied electric field. To date, this phenomenon has mainly been observed in insulating materials such as complex multiferroic oxides. Bulk metallic systems do not exhibit magnetoelectric coupling, because applied electric fields are screened by conduction electrons. We demonstrate strong magnetoelectric coupling at the surface of thin iron films using the electric field from a scanning tunnelling microscope, and are able to write, store and read information to areas with sides of a few nanometres. Our work demonstrates that high-density, non-volatile information storage is possible in metals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simulations of surface relaxations under the influence of an electric field in Fe/Cu(111).
Figure 2: Crystallographic and electronic structure of Fe islands.
Figure 3: Controlled switching with electric fields.
Figure 4: Controlling fcc versus bcc structures with the local electric field.

Similar content being viewed by others


  1. Smolenskii, G. A. & Chups, I. E. Ferroelectromagnetism. Soviet Physics Uspekhi 25, 475–493 (1982).

    Article  Google Scholar 

  2. Lottermoser, T. et al. Magnetic phase control by an electric field. Nature 430, 541–544 (2004).

    Article  CAS  Google Scholar 

  3. Spaldin, N. A. & Fiebig, M. The renaissance of magnetoelectric multiferroics. Science 309, 391–392 (2005).

    Article  CAS  Google Scholar 

  4. Zheng, H. et al. Multiferroic BaTiO3–CoFe2O4 nanostructures. Science 303, 661–663 (2004).

    Article  CAS  Google Scholar 

  5. Zavaliche, F. et al. Electric field-induced magnetization switching in epitaxial columnar nanostructures. Nano Lett. 5, 1793–1796 (2005).

    Article  CAS  Google Scholar 

  6. Duan, C.-G., Jaswal, S. S. & Tsymbal, E. Y. Predicted magnetoelectric effect in Fe/BaTiO3 multilayers: ferroelectric control of magnetism. Phys. Rev. Lett. 97, 047201 (2006).

    Article  Google Scholar 

  7. Fechner, M. et al. Magnetic phase transition in two-phase multiferroics predicted from first principles. Phys. Rev. B 78, 212406 (2008).

    Article  Google Scholar 

  8. Lang, N. D. & Kohn, W. Theory of metal surfaces: charge density and surface energy. Phys. Rev. B 1, 4555–4568 (1970).

    Article  Google Scholar 

  9. Weisheit, M. et al. Electric field-induced modification of magnetism in thin-film ferromagnets. Science 315, 349–351 (2007).

    Article  CAS  Google Scholar 

  10. Weissmüller, J. et al. Charge-induced reversible strain in a metal. Science 300, 312–315 (2003).

    Article  Google Scholar 

  11. Moruzzi, V. L., Marcus, P. M., Schwarz, K. & Mohn, P. Ferromagnetic phases of bcc and fcc Fe, Co, and Ni. Phys. Rev. B 34, 1784–1791 (1986).

    Article  CAS  Google Scholar 

  12. Bain, E. C. The nature of martensite. Trans. Am. Inst. Min. Metall. Pet. Eng. 70, 25–46 (1924).

    Google Scholar 

  13. Sandoval, L., Urbassek, H. M. & Entel, P. The Bain versus Nishiyama–Wassermann path in the martensitic transformation of Fe. New J. Phys. 11, 103027 (2009).

    Article  Google Scholar 

  14. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  15. Biedermann, A., Rupp, W., Schmid, M. & Varga, P. Coexistence of fcc- and bcc-like crystal structures in ultrathin Fe films grown on Cu(111). Phys. Rev. B 73, 165418 (2006).

    Article  Google Scholar 

  16. Tersoff, J. & Hamann, D. R. Theory and application for the scanning tunneling microscope. Phys. Rev. Lett. 50, 1998–2001 (1983).

    Article  CAS  Google Scholar 

  17. Ukraintsev, V. A. Data evaluation technique for electron-tunneling spectroscopy. Phys. Rev. B 53, 11176–11185 (1996).

    Article  CAS  Google Scholar 

  18. Lüders, M., Ernst, A., Temmerman, W. M., Szotek, Z. & Durham, P. J. Ab initio angle-resolved photoemission in multiple-scattering formulation. J. Phys. Condens. Matter 13, 8587–8606 (2001).

    Article  Google Scholar 

  19. Maruyama, T. et al. Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nature Nanotech. 4, 158–161 (2009).

    Article  CAS  Google Scholar 

  20. Slonczewski, J. C. Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier. Phys. Rev. B 39, 6995–7002 (1989).

    Article  CAS  Google Scholar 

  21. Jedema, F. J., Filip, A. T. & van Wees, B. J. Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve. Nature 410, 345–348 (2001).

    Article  CAS  Google Scholar 

  22. Hofer, W. A., Fisher, A. J., Wolkow, R. A. & Grütter, P. Surface relaxations, current enhancements, and absolute distances in high resolution scanning tunneling microscopy. Phys. Rev. Lett. 87, 236104 (2001).

    Article  CAS  Google Scholar 

  23. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid–metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article  CAS  Google Scholar 

  24. Hafner, J. Ab-initio simulations of materials using VASP: density-functional theory and beyond. J. Comput. Chem. 29, 2044–2078 (2008).

    Article  CAS  Google Scholar 

  25. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  26. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  27. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  28. Neugebauer, J. & Scheffler, M. Adsorbate–substrate and adsorbate–adsorbate interactions of Na and K adlayers on Al(111). Phys. Rev. B 46, 16067–16080 (1992).

    Article  CAS  Google Scholar 

  29. Lüders, M., Ernst, A., Temmerman, W. M., Szotek, Z. & Durham, P. J. Ab initio angle-resolved photoemission in multiple-scattering formulation. J. Physics Condens. Matter 13, 8587–8606 (2001).

    Article  Google Scholar 

  30. Szunyogh, L., Újfalussy, B., Weinberger, P. & Kollár, J. Self-consistent localized KKR scheme for surfaces and interfaces. Phys. Rev. B 49, 2721–2729 (1994).

    Article  CAS  Google Scholar 

Download references


This work was supported by the Alexander von Humboldt Foundation, the CNCSIS-UEFISCSU and the Sonderforschungsbereich SFB 762, ‘Functionality of Oxidic Interfaces’. The authors thank P.J. Kelly for careful reading of the manuscript, and H.L. Meyerheim, Z. Szotek and W.M. Temmerman for many stimulating discussions. A.E. thanks V.M. Kuznetsov and T.A. Shabunina for their help and support during his stay at the Tomsk State University. Calculations were performed at the John von Neumann Institute in Jülich and Rechenzentrum Garching of the Max Planck Society (Germany).

Author information

Authors and Affiliations



L.G., T.K.Y. and W.W. conceived and designed the experiments. L.G., T.B., A.F.T. and R.J.H.W. performed the experiments. L.G., R.J.H.W. and T.K.Y. analysed the data. A.E., I.M. and S.O. designed the calculations. A.E., S.O. and M.D. performed the calculations. M.F. and M.D. contributed analysis tools. A.E., L.G., I.M. and W.W. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to W. Wulfhekel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 672 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerhard, L., Yamada, T., Balashov, T. et al. Magnetoelectric coupling at metal surfaces. Nature Nanotech 5, 792–797 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing