Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Autonomous multistep organic synthesis in a single isothermal solution mediated by a DNA walker

Abstract

Multistep synthesis in the laboratory typically requires numerous reaction vessels, each containing a different set of reactants. In contrast, cells are capable of performing highly efficient and selective multistep biosynthesis under mild conditions with all reactants simultaneously present in solution1,2,3,4. If the latter approach could be applied in the laboratory, it could improve the ease, speed and efficiency of multistep reaction sequences. Here, we show that a DNA mechanical device—a DNA walker moving along a DNA track—can be used to perform a series of amine acylation reactions in a single solution without any external intervention. The products of these reactions are programmed by the sequence of the DNA track, but they are not related to the structure of DNA. Moreover, they are formed with speeds and overall yields that are significantly greater than those previously achieved by multistep DNA-templated small-molecule synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the DNAsome system.
Figure 2: Analysis of reaction products generated by the DNAsome system.
Figure 3: Mass spectroscopy analysis of reactions identical to the one shown in Fig. 2a, but using different DNA tracks or with no DNA track.

Similar content being viewed by others

References

  1. Hanes, J. & Pluckthun, A. In vitro selection and evolution of functional proteins by using ribosome display. Proc. Natl Acad. Sci. USA 94, 4937–4942 (1997).

    Article  CAS  Google Scholar 

  2. Zahnd, C., Amstutz, P. & Pluckthun, A. Ribosome display: selecting and evolving proteins in vitro that specifically bind to a target. Nature Methods 4, 269–279 (2007).

    Article  CAS  Google Scholar 

  3. Walsh, C. T. Polyketide and nonribosomal peptide antibiotics: modularity and versatility. Science 303, 1805–1810 (2004).

    Article  CAS  Google Scholar 

  4. Sattely, E. S., Fischbach, M. A. & Walsh, C. T. Total biosynthesis: in vitro reconstitution of polyketide and nonribosomal peptide pathways. Nat. Prod. Rep. 25, 757–793 (2008).

    Article  CAS  Google Scholar 

  5. Snyder, T. M. & Liu, D. R. Ordered multistep synthesis in a single solution directed by DNA templates. Angew. Chem. Int. Ed. 44, 7379–7382 (2005).

    Article  CAS  Google Scholar 

  6. Seeman, N. C. From genes to machines: DNA nanomechanical devices. Trends Biochem. Sci. 30, 119–125 (2005).

    Article  CAS  Google Scholar 

  7. Bath, J. & Turberfield, A. J. DNA nanomachines. Nature Nanotech. 2, 275–284 (2007).

    Article  CAS  Google Scholar 

  8. Liedl, T., Sobey, T. L. & Simmel, F. C. DNA-based nanodevices. Nano Today 2, 36–41 (2007).

    Article  Google Scholar 

  9. Beissenhirtz, M. K. & Willner, I. DNA-based machines. Org. Biomol. Chem. 4, 3392–3401 (2006).

    Article  CAS  Google Scholar 

  10. Yin, P., Yan, H., Daniell, X. G., Turberfield, A. J. & Reif, J. H. A unidirectional DNA walker that moves autonomously along a track. Angew. Chem. Int. Ed. 43, 4906–4911 (2004).

    Article  CAS  Google Scholar 

  11. Bath, J., Green, S. J. & Turberfield, A. J. A free-running DNA motor powered by a nicking enzyme. Angew. Chem. Int. Ed. 44, 4358–4361 (2005).

    Article  CAS  Google Scholar 

  12. Tian, Y., He, Y., Chen, Y., Yin, P. & Mao, C. D. Molecular devices—a DNAzyme that walks processively and autonomously along a one-dimensional track. Angew. Chem. Int. Ed. 44, 4355–4358 (2005).

    Article  CAS  Google Scholar 

  13. Yin, P., Choi, H. M. T., Calvert, C. R. & Pierce, N. A. Programming biomolecular self-assembly pathways. Nature 451, 318–322 (2008).

    Article  CAS  Google Scholar 

  14. Omabegho, T., Sha, R. & Seeman, N. C. A bipedal DNA Brownian motor with coordinated legs. Science 324, 67–71 (2009).

    Article  CAS  Google Scholar 

  15. Gu, H. Z., Chao, J., Xiao, S. J. & Seeman, N. C. A proximity-based programmable DNA nanoscale assembly line. Nature 465, 202–205 (2010).

    Article  CAS  Google Scholar 

  16. Lund, K. et al. Molecular robots guided by prescriptive landscapes. Nature 465, 206–210 (2010).

    Article  CAS  Google Scholar 

  17. Gartner, Z. J., Kanan, M. W. & Liu, D. R. Multistep small-molecule synthesis programmed by DNA templates. J. Am. Chem. Soc. 124, 10304–10306 (2002).

    Article  CAS  Google Scholar 

  18. Chhabra, R., Sharma, J., Liu, Y. & Yan, H. Addressable molecular tweezers for DNA-templated coupling reactions. Nano Lett. 6, 978–983 (2006).

    Article  CAS  Google Scholar 

  19. Chen, Y. & Mao, C. Reprogramming DNA-directed reactions on the basis of a DNA conformational change. J. Am. Chem. Soc. 126, 13240–13241 (2004).

    Article  CAS  Google Scholar 

  20. Voigt, N. V. et al. Single-molecule chemical reactions on DNA origami. Nature Nanotech. 5, 200–203 (2010).

    Article  CAS  Google Scholar 

  21. Santoro, S. W. & Joyce, G. F. A general purpose RNA-cleaving DNA enzyme. Proc. Natl Acad. Sci. USA 94, 4262–4266 (1997).

    Article  CAS  Google Scholar 

  22. Nissen, P., Hansen, J., Ban, N., Moore, P. B. & Steitz, T. A. The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920–930 (2000).

    Article  CAS  Google Scholar 

  23. Trobro, S. & Aqvist, J. Mechanism of peptide bond synthesis on the ribosome. Proc. Natl Acad. Sci. USA 102, 12395–12400 (2005).

    Article  CAS  Google Scholar 

  24. Snyder, T. M., Tse, B. N. & Liu, D. R. Effects of template sequence and secondary structure on DNA-templated reactivity. J. Am. Chem. Soc. 130, 1392–1401 (2008).

    Article  CAS  Google Scholar 

  25. Gartner, Z. J. & Liu, D. R. The generality of DNA-templated synthesis as a basis for evolving non-natural small molecules. J. Am. Chem. Soc. 123, 6961–6963 (2001).

    Article  CAS  Google Scholar 

  26. Li, X. Y. & Liu, D. R. DNA-templated organic synthesis: nature's strategy for controlling chemical reactivity applied to synthetic molecules. Angew. Chem. Int. Ed. 43, 4848–4870 (2004).

    Article  CAS  Google Scholar 

  27. Tse, B. N., Snyder, T. M., Shen, Y. H. & Liu, D. R. Translation of DNA into a library of 13000 synthetic small-molecule macrocycles suitable for in vitro selection. J. Am. Chem. Soc. 130, 15611–15626 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Howard Hughes Medical Institute and National Institutes of Health/National Institute of General Medical Sciences (R01GM065865). The authors thank C. Dumelin and Y. Chen for insightful discussions and experimental assistance. The authors are grateful to Y. Shen for assistance with mass spectrometry.

Author information

Authors and Affiliations

Authors

Contributions

Y.H. and D.L. conceived and designed the project, analysed the data and wrote the manuscript. Y.H. performed the experiments.

Corresponding author

Correspondence to David R. Liu.

Ethics declarations

Competing interests

D.L. is a consultant for Ensemble Discovery, a company that uses DNA-templated synthesis for industrial applications.

Supplementary information

Supplementary information

Supplementary information (PDF 1204 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Y., Liu, D. Autonomous multistep organic synthesis in a single isothermal solution mediated by a DNA walker. Nature Nanotech 5, 778–782 (2010). https://doi.org/10.1038/nnano.2010.190

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.190

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research