Direct nanoprinting by liquid-bridge-mediated nanotransfer moulding


Several techniques for the direct printing of functional materials have been developed to fabricate micro- and nanoscale structures and devices. We report a new direct patterning method, liquid-bridge-mediated nanotransfer moulding, for the formation of two- or three-dimensional structures with feature sizes as small as tens of nanometres over large areas up to 4 inches across. Liquid-bridge-mediated nanotransfer moulding is based on the direct transfer of various materials from a mould to a substrate through a liquid bridge between them. We demonstrate its usefulness by fabricating nanowire field-effect transistors and arrays of pentacene thin-film transistors.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Liquid-bridge-mediated nanotransfer moulding.
Figure 2: SEM images of nanoscale patterns (white) of different materials fabricated by LB-nTM on silicon substrates (black).
Figure 3: SEM images of microscale patterns (white) of different materials fabricated by LB-nTM on silicon substrates (black).
Figure 4: ZTO nanowire field-effect transistors.
Figure 5: TIPS-PEN thin-film transistors.


  1. 1

    Wallraff, G. M. & Hinsberg, W. D. Lithographic imaging techniques for the formation of nanoscopic features. Chem. Rev. 99, 1801–1822 (1999).

    CAS  Article  Google Scholar 

  2. 2

    Yao, J. J. RF MEMS from a device perspective. J. Micromech. Microeng. 10, R9–R38 (2000).

    CAS  Article  Google Scholar 

  3. 3

    Walker, J. A. The future of MEMS in telecommunications networks. J. Micromech. Microeng. 10, R1–R7 (2000).

    Article  Google Scholar 

  4. 4

    Spearing, S. M. Materials issue in microelectromechanical systems (MEMS). Acta Mater. 48, 179–196 (2000).

    CAS  Article  Google Scholar 

  5. 5

    Dong, Y. & Shannon, C. Heterogeneous immunosensing using antigen and antibody monolayers on gold surfaces with electrochemical and scanning probe detection. Anal. Chem. 72, 2371–2376 (2000).

    CAS  Article  Google Scholar 

  6. 6

    Lahiri, J., Isaacs, L., Tien, J. & Whitesides, G. M. A strategy for the generation of surfaces presenting ligands for studies of binding based on an active ester as a common reactive intermediate: a surface plasmon resonance study. Anal. Chem. 71, 777–790 (1999).

    CAS  Article  Google Scholar 

  7. 7

    Sirkar, K., Revzin, A. & Pishko, M. V. Glucose and lactate biosensors based on redox polymer/oxidoreductase nanocomposite thin films. Anal. Chem. 72, 2930–2936 (2000).

    CAS  Article  Google Scholar 

  8. 8

    Wells, M. & Crooks, R. M. Interactions between organized, surface-confined monolayers and vapor-phase probe molecules. 10. Preparation and properties of chemically sensitive dendrimer surfaces. J. Am. Chem. Soc. 118, 3988–3989 (1996).

    CAS  Article  Google Scholar 

  9. 9

    Beebe, D. J. et al. Microfluidic tectonics: a comprehensive construction platform for microfluidic systems. Proc. Natl Acad. Sci. USA 97, 13488–13493 (2000).

    CAS  Article  Google Scholar 

  10. 10

    Beebe, D. J., Mensing, G. A. & Walker, G. M. Physics and applications of microfluidics in biology. Annu. Rev. Biomed. Eng. 4, 261–286 (2002).

    CAS  Article  Google Scholar 

  11. 11

    Rossier, J., Reymond, F. & Michel, P. E. Polymer microfluidic chips for electrochemical and biochemical analyses. Electrophoresis 23, 858–867 (2002).

    CAS  Article  Google Scholar 

  12. 12

    Becker, H. & Gartner, C. Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis 21, 12–26 (2000).

    CAS  Article  Google Scholar 

  13. 13

    Maes, H. E. et al. Trends in microelectronics, optical detectors, and biosensors. Adv. Eng. Mater. 3, 781–787 (2001).

    CAS  Article  Google Scholar 

  14. 14

    Sirringhaus, H. et al. High-resolution inkjet printing of all-polymer transistor circuits. Science 290, 2123–2126 (2000).

    CAS  Article  Google Scholar 

  15. 15

    Pardo, D. A., Jabbour, G. E. & Peyghambarian, N. Application of screen printing in the fabrication of organic light-emitting devices. Adv. Mater. 12, 1249–1252 (2000).

    CAS  Article  Google Scholar 

  16. 16

    Harri, L. Microscopic studies of the influence of main exposure time on parameters of flexographic printing plate produced by digital thermal method. Microsc. Res. Tech. 72, 707–716 (2009).

    Article  Google Scholar 

  17. 17

    Kopola, P., Tuomikoski, M., Suhonen, R. & Maaninen, A. Gravure printed organic light emitting diodes for lighting applications. Thin Solid Films 517, 5757–5762 (2009).

    CAS  Article  Google Scholar 

  18. 18

    Kittila, M., Hagberg, J., Jakku, E. & Leppavuori, S. Direct gravure printing (DGP) method for printing fine-line electrical circuits on ceramics. IEEE Trans. Electron. Packag. Manuf. 27, 109–114 (2004).

    CAS  Article  Google Scholar 

  19. 19

    Pudas, M., Hagberg, J. & Leppavuori, S. Printing parameters and ink components affecting ultra-fine-line gravure-offset printing for electronics applications. J. Eur. Ceram. Soc. 24, 2943–2950 (2004).

    CAS  Article  Google Scholar 

  20. 20

    Zielke, D. et al. Polymer-based organic field-effect transistor using offset printed source/drain structures. Appl. Phys. Lett. 87, 123508 (2005).

    Article  Google Scholar 

  21. 21

    Pudas, M., Hagberg, J. & Leppavuori, S. Roller-type gravure offset printing of conductive inks for high-resolution printing on ceramic substrates. Int. J. Electron. 92, 251–269 (2005).

    CAS  Article  Google Scholar 

  22. 22

    Zhao, X.-M., Xia, Y. & Whitesides, G. M. Fabrication of three-dimensional micro-structures: microtransfer molding. Adv. Mater. 8, 837–840 (1996).

    CAS  Article  Google Scholar 

  23. 23

    Yang, H., Deschatelets, P., Brittain, S. T. & Whitesides, G. M. Fabrication of high performance ceramic microstructures from a polymeric precursor using soft lithography. Adv. Mater. 13, 54–58 (2001).

    Article  Google Scholar 

  24. 24

    Leung, W. Y. et al. Fabrication of photonic band gap crystal using microtransfer molded templates. J. Appl. Phys. 93, 5866–5870 (2003).

    CAS  Article  Google Scholar 

  25. 25

    Thibault, C., Severac, C., Trévisiol, E. & Vieu, C. Microtransfer molding of hydrophobic dentrimer. Microelectron. Eng. 83, 1513–1516 (2006).

    CAS  Article  Google Scholar 

  26. 26

    Kim, M. J., Song, S. & Lee, H. H. A two-step dewetting method for large-scale patterning. J. Micromech. Microeng. 16, 1700–1704 (2006).

    Article  Google Scholar 

  27. 27

    Kraus, T. et al. Nanoparticle patterning with single-particle resolution. Nature Nanotech. 2, 570–576 (2007).

    CAS  Article  Google Scholar 

  28. 28

    Gates, B. D. et al. New approaches to nanofabrication: molding, printing, and other techniques. Chem. Rev. 105, 1171–1196 (2005).

    CAS  Article  Google Scholar 

  29. 29

    Guo, L. J. Nanoimprint lithography: methods and material requirements. Adv. Mater. 19, 495–513 (2007).

    CAS  Article  Google Scholar 

  30. 30

    Rolland, J. P. Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. J. Am. Chem. Soc. 127, 10096–10100 (2005).

    CAS  Article  Google Scholar 

  31. 31

    Yang, K.-Y., Yoon, K.-M., Choi, K.-W. & Lee, H. The direct nano-patterning of ZnO using nanoimprint lithography with ZnO-sol and thermal annealing. Microelectron. Eng. 86, 2228–2231 (2009).

    CAS  Article  Google Scholar 

  32. 32

    Ko, S. H. et al. Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication. Nano Lett. 7, 1869–1877 (2007).

    CAS  Article  Google Scholar 

  33. 33

    Suh, K. Y. & Lee, H. H. Capillary force lithography: large-area patterning, self-organization, and anisotropic dewetting. Adv. Funct. Mater. 12, 405–413 (2002).

    CAS  Article  Google Scholar 

  34. 34

    Duan, X. et al. Nanopatterning by an integrated process combining capillary force lithography and microcontact printing. Adv. Funct. Mater. 20, 663–668 (2010).

    CAS  Article  Google Scholar 

  35. 35

    Loo, Y. -L., Willett, R. L., Baldwind, K. W. & Rogers, J. A. Interfacial chemistries for nanoscale transfer printing. J. Am. Chem. Soc. 124, 7654–7655 (2002).

    CAS  Article  Google Scholar 

  36. 36

    Zaumseil, J. et al. Three-dimensional and multilayer nanostructures formed by nanotransfer printing. Nano Lett. 3, 1223–1227 (2003).

    CAS  Article  Google Scholar 

  37. 37

    Rogers, J. A. & Nuzzo, R. G. Recent progress in soft lithography. Mater. Today 8, 50–56 (February 2005).

    CAS  Article  Google Scholar 

  38. 38

    Lee, B. H. et al. High-resolution patterning of aluminum thin films with a water-mediated transfer process. Adv. Mater. 19, 1714–1718 (2007).

    CAS  Article  Google Scholar 

  39. 39

    Oh, K. et al. Water-mediated Al metal transfer printing with contact inking for fabrication of thin-film transistors. Small 5, 558–561 (2009).

    CAS  Article  Google Scholar 

  40. 40

    Jackman, R. J. Fabricating large arrays of microwells with arbitrary dimensions and filling them using discontinuous dewetting. Anal. Chem. 70, 2280–2287 (1998).

    CAS  Article  Google Scholar 

  41. 41

    Merkel, T. C., Bondar, V. I., Nagai, K., Freeman, B. D. & Pinnau, I. Gas sorption, diffusion, and permeation in poly(dimethylsiloxane). J. Polym. Sci. B 38, 415–434 (2000).

    CAS  Article  Google Scholar 

  42. 42

    Kim, Y. S., Lee, H. H. & Hammond, P. T. High density nanostructure transfer in soft molding using polyurethane acrylate molds and polyelectrolyte multilayers. Nanotechnology 14, 1140–1144 (2003).

    CAS  Article  Google Scholar 

  43. 43

    Kim, J. S. et al. Fabrication of nanowire polarizer by using nanoimprint lithography. J. Korean Phys. Soc. 45, 890–892 (2004).

    Google Scholar 

  44. 44

    Jeong, S., Jeong, Y. & Moon, J. Solution-processed zinc tin oxide semiconductor for thin-film transistors. J. Phys. Chem. C 112, 11082–11085 (2008).

    CAS  Article  Google Scholar 

  45. 45

    Kim, D. et al. Inkjet-printed zinc tin oxide thin-film transistor. Langmuir 25, 11149–11154 (2009).

    CAS  Article  Google Scholar 

  46. 46

    Kim, D. et al. All-solution-processed bottom-gate organic oxide thin-film transistor with improved subthreshold behavior using functionalized pentacene active layer. J. Phys. D 42, 115107 (2009).

    Article  Google Scholar 

  47. 47

    Anthony, J. E., Brooks, J. S., Eaton, D. L. & Parkin, S. R. Functionalized pentacene: improved electronic properties from control of solid-state order. J. Am. Chem. Soc. 123, 9482–9483 (2001).

    CAS  Article  Google Scholar 

  48. 48

    Anthony, J. E., Eaton, D. L. & Parkin, S. R. A road map to stable, soluble, easily crystallized pentacene derivatives. Org. Lett. 4, 15–18 (2002).

    CAS  Article  Google Scholar 

  49. 49

    Ishizaka, A. & Shiraki, Y. Low temperature surface cleaning of silicon and its application to silicon MBE. J. Electrochem. Soc. 133, 666–671 (1986).

    CAS  Article  Google Scholar 

Download references


This work was supported by the National Research Foundation of Korea (2009-0092807; 2010-0019125; 2009-0086302), the Seoul R&BD programme (ST090839), the IT R&D program of MKE/KEIT (10030559) and the Korea Research Foundation (KRF-2007-313-C00383).

Author information




M.M.S. conceived and designed the experiments. J.K.H., E.B.K., S.C. and J.M.D. performed the experiments. K.S. and J.M. contributed to materials and analysis. S.C. and M.M.S. co-wrote the paper.

Corresponding author

Correspondence to Myung M. Sung.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1431 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hwang, J., Cho, S., Dang, J. et al. Direct nanoprinting by liquid-bridge-mediated nanotransfer moulding. Nature Nanotech 5, 742–748 (2010).

Download citation

Further reading