Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct nanoprinting by liquid-bridge-mediated nanotransfer moulding

Abstract

Several techniques for the direct printing of functional materials have been developed to fabricate micro- and nanoscale structures and devices. We report a new direct patterning method, liquid-bridge-mediated nanotransfer moulding, for the formation of two- or three-dimensional structures with feature sizes as small as tens of nanometres over large areas up to 4 inches across. Liquid-bridge-mediated nanotransfer moulding is based on the direct transfer of various materials from a mould to a substrate through a liquid bridge between them. We demonstrate its usefulness by fabricating nanowire field-effect transistors and arrays of pentacene thin-film transistors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Liquid-bridge-mediated nanotransfer moulding.
Figure 2: SEM images of nanoscale patterns (white) of different materials fabricated by LB-nTM on silicon substrates (black).
Figure 3: SEM images of microscale patterns (white) of different materials fabricated by LB-nTM on silicon substrates (black).
Figure 4: ZTO nanowire field-effect transistors.
Figure 5: TIPS-PEN thin-film transistors.

Similar content being viewed by others

References

  1. Wallraff, G. M. & Hinsberg, W. D. Lithographic imaging techniques for the formation of nanoscopic features. Chem. Rev. 99, 1801–1822 (1999).

    Article  CAS  Google Scholar 

  2. Yao, J. J. RF MEMS from a device perspective. J. Micromech. Microeng. 10, R9–R38 (2000).

    Article  CAS  Google Scholar 

  3. Walker, J. A. The future of MEMS in telecommunications networks. J. Micromech. Microeng. 10, R1–R7 (2000).

    Article  Google Scholar 

  4. Spearing, S. M. Materials issue in microelectromechanical systems (MEMS). Acta Mater. 48, 179–196 (2000).

    Article  CAS  Google Scholar 

  5. Dong, Y. & Shannon, C. Heterogeneous immunosensing using antigen and antibody monolayers on gold surfaces with electrochemical and scanning probe detection. Anal. Chem. 72, 2371–2376 (2000).

    Article  CAS  Google Scholar 

  6. Lahiri, J., Isaacs, L., Tien, J. & Whitesides, G. M. A strategy for the generation of surfaces presenting ligands for studies of binding based on an active ester as a common reactive intermediate: a surface plasmon resonance study. Anal. Chem. 71, 777–790 (1999).

    Article  CAS  Google Scholar 

  7. Sirkar, K., Revzin, A. & Pishko, M. V. Glucose and lactate biosensors based on redox polymer/oxidoreductase nanocomposite thin films. Anal. Chem. 72, 2930–2936 (2000).

    Article  CAS  Google Scholar 

  8. Wells, M. & Crooks, R. M. Interactions between organized, surface-confined monolayers and vapor-phase probe molecules. 10. Preparation and properties of chemically sensitive dendrimer surfaces. J. Am. Chem. Soc. 118, 3988–3989 (1996).

    Article  CAS  Google Scholar 

  9. Beebe, D. J. et al. Microfluidic tectonics: a comprehensive construction platform for microfluidic systems. Proc. Natl Acad. Sci. USA 97, 13488–13493 (2000).

    Article  CAS  Google Scholar 

  10. Beebe, D. J., Mensing, G. A. & Walker, G. M. Physics and applications of microfluidics in biology. Annu. Rev. Biomed. Eng. 4, 261–286 (2002).

    Article  CAS  Google Scholar 

  11. Rossier, J., Reymond, F. & Michel, P. E. Polymer microfluidic chips for electrochemical and biochemical analyses. Electrophoresis 23, 858–867 (2002).

    Article  CAS  Google Scholar 

  12. Becker, H. & Gartner, C. Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis 21, 12–26 (2000).

    Article  CAS  Google Scholar 

  13. Maes, H. E. et al. Trends in microelectronics, optical detectors, and biosensors. Adv. Eng. Mater. 3, 781–787 (2001).

    Article  CAS  Google Scholar 

  14. Sirringhaus, H. et al. High-resolution inkjet printing of all-polymer transistor circuits. Science 290, 2123–2126 (2000).

    Article  CAS  Google Scholar 

  15. Pardo, D. A., Jabbour, G. E. & Peyghambarian, N. Application of screen printing in the fabrication of organic light-emitting devices. Adv. Mater. 12, 1249–1252 (2000).

    Article  CAS  Google Scholar 

  16. Harri, L. Microscopic studies of the influence of main exposure time on parameters of flexographic printing plate produced by digital thermal method. Microsc. Res. Tech. 72, 707–716 (2009).

    Article  Google Scholar 

  17. Kopola, P., Tuomikoski, M., Suhonen, R. & Maaninen, A. Gravure printed organic light emitting diodes for lighting applications. Thin Solid Films 517, 5757–5762 (2009).

    Article  CAS  Google Scholar 

  18. Kittila, M., Hagberg, J., Jakku, E. & Leppavuori, S. Direct gravure printing (DGP) method for printing fine-line electrical circuits on ceramics. IEEE Trans. Electron. Packag. Manuf. 27, 109–114 (2004).

    Article  CAS  Google Scholar 

  19. Pudas, M., Hagberg, J. & Leppavuori, S. Printing parameters and ink components affecting ultra-fine-line gravure-offset printing for electronics applications. J. Eur. Ceram. Soc. 24, 2943–2950 (2004).

    Article  CAS  Google Scholar 

  20. Zielke, D. et al. Polymer-based organic field-effect transistor using offset printed source/drain structures. Appl. Phys. Lett. 87, 123508 (2005).

    Article  Google Scholar 

  21. Pudas, M., Hagberg, J. & Leppavuori, S. Roller-type gravure offset printing of conductive inks for high-resolution printing on ceramic substrates. Int. J. Electron. 92, 251–269 (2005).

    Article  CAS  Google Scholar 

  22. Zhao, X.-M., Xia, Y. & Whitesides, G. M. Fabrication of three-dimensional micro-structures: microtransfer molding. Adv. Mater. 8, 837–840 (1996).

    Article  CAS  Google Scholar 

  23. Yang, H., Deschatelets, P., Brittain, S. T. & Whitesides, G. M. Fabrication of high performance ceramic microstructures from a polymeric precursor using soft lithography. Adv. Mater. 13, 54–58 (2001).

    Article  Google Scholar 

  24. Leung, W. Y. et al. Fabrication of photonic band gap crystal using microtransfer molded templates. J. Appl. Phys. 93, 5866–5870 (2003).

    Article  CAS  Google Scholar 

  25. Thibault, C., Severac, C., Trévisiol, E. & Vieu, C. Microtransfer molding of hydrophobic dentrimer. Microelectron. Eng. 83, 1513–1516 (2006).

    Article  CAS  Google Scholar 

  26. Kim, M. J., Song, S. & Lee, H. H. A two-step dewetting method for large-scale patterning. J. Micromech. Microeng. 16, 1700–1704 (2006).

    Article  Google Scholar 

  27. Kraus, T. et al. Nanoparticle patterning with single-particle resolution. Nature Nanotech. 2, 570–576 (2007).

    Article  CAS  Google Scholar 

  28. Gates, B. D. et al. New approaches to nanofabrication: molding, printing, and other techniques. Chem. Rev. 105, 1171–1196 (2005).

    Article  CAS  Google Scholar 

  29. Guo, L. J. Nanoimprint lithography: methods and material requirements. Adv. Mater. 19, 495–513 (2007).

    Article  CAS  Google Scholar 

  30. Rolland, J. P. Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. J. Am. Chem. Soc. 127, 10096–10100 (2005).

    Article  CAS  Google Scholar 

  31. Yang, K.-Y., Yoon, K.-M., Choi, K.-W. & Lee, H. The direct nano-patterning of ZnO using nanoimprint lithography with ZnO-sol and thermal annealing. Microelectron. Eng. 86, 2228–2231 (2009).

    Article  CAS  Google Scholar 

  32. Ko, S. H. et al. Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication. Nano Lett. 7, 1869–1877 (2007).

    Article  CAS  Google Scholar 

  33. Suh, K. Y. & Lee, H. H. Capillary force lithography: large-area patterning, self-organization, and anisotropic dewetting. Adv. Funct. Mater. 12, 405–413 (2002).

    Article  CAS  Google Scholar 

  34. Duan, X. et al. Nanopatterning by an integrated process combining capillary force lithography and microcontact printing. Adv. Funct. Mater. 20, 663–668 (2010).

    Article  CAS  Google Scholar 

  35. Loo, Y. -L., Willett, R. L., Baldwind, K. W. & Rogers, J. A. Interfacial chemistries for nanoscale transfer printing. J. Am. Chem. Soc. 124, 7654–7655 (2002).

    Article  CAS  Google Scholar 

  36. Zaumseil, J. et al. Three-dimensional and multilayer nanostructures formed by nanotransfer printing. Nano Lett. 3, 1223–1227 (2003).

    Article  CAS  Google Scholar 

  37. Rogers, J. A. & Nuzzo, R. G. Recent progress in soft lithography. Mater. Today 8, 50–56 (February 2005).

    Article  CAS  Google Scholar 

  38. Lee, B. H. et al. High-resolution patterning of aluminum thin films with a water-mediated transfer process. Adv. Mater. 19, 1714–1718 (2007).

    Article  CAS  Google Scholar 

  39. Oh, K. et al. Water-mediated Al metal transfer printing with contact inking for fabrication of thin-film transistors. Small 5, 558–561 (2009).

    Article  CAS  Google Scholar 

  40. Jackman, R. J. Fabricating large arrays of microwells with arbitrary dimensions and filling them using discontinuous dewetting. Anal. Chem. 70, 2280–2287 (1998).

    Article  CAS  Google Scholar 

  41. Merkel, T. C., Bondar, V. I., Nagai, K., Freeman, B. D. & Pinnau, I. Gas sorption, diffusion, and permeation in poly(dimethylsiloxane). J. Polym. Sci. B 38, 415–434 (2000).

    Article  CAS  Google Scholar 

  42. Kim, Y. S., Lee, H. H. & Hammond, P. T. High density nanostructure transfer in soft molding using polyurethane acrylate molds and polyelectrolyte multilayers. Nanotechnology 14, 1140–1144 (2003).

    Article  CAS  Google Scholar 

  43. Kim, J. S. et al. Fabrication of nanowire polarizer by using nanoimprint lithography. J. Korean Phys. Soc. 45, 890–892 (2004).

    Google Scholar 

  44. Jeong, S., Jeong, Y. & Moon, J. Solution-processed zinc tin oxide semiconductor for thin-film transistors. J. Phys. Chem. C 112, 11082–11085 (2008).

    Article  CAS  Google Scholar 

  45. Kim, D. et al. Inkjet-printed zinc tin oxide thin-film transistor. Langmuir 25, 11149–11154 (2009).

    Article  CAS  Google Scholar 

  46. Kim, D. et al. All-solution-processed bottom-gate organic oxide thin-film transistor with improved subthreshold behavior using functionalized pentacene active layer. J. Phys. D 42, 115107 (2009).

    Article  Google Scholar 

  47. Anthony, J. E., Brooks, J. S., Eaton, D. L. & Parkin, S. R. Functionalized pentacene: improved electronic properties from control of solid-state order. J. Am. Chem. Soc. 123, 9482–9483 (2001).

    Article  CAS  Google Scholar 

  48. Anthony, J. E., Eaton, D. L. & Parkin, S. R. A road map to stable, soluble, easily crystallized pentacene derivatives. Org. Lett. 4, 15–18 (2002).

    Article  CAS  Google Scholar 

  49. Ishizaka, A. & Shiraki, Y. Low temperature surface cleaning of silicon and its application to silicon MBE. J. Electrochem. Soc. 133, 666–671 (1986).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (2009-0092807; 2010-0019125; 2009-0086302), the Seoul R&BD programme (ST090839), the IT R&D program of MKE/KEIT (10030559) and the Korea Research Foundation (KRF-2007-313-C00383).

Author information

Authors and Affiliations

Authors

Contributions

M.M.S. conceived and designed the experiments. J.K.H., E.B.K., S.C. and J.M.D. performed the experiments. K.S. and J.M. contributed to materials and analysis. S.C. and M.M.S. co-wrote the paper.

Corresponding author

Correspondence to Myung M. Sung.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1431 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, J., Cho, S., Dang, J. et al. Direct nanoprinting by liquid-bridge-mediated nanotransfer moulding. Nature Nanotech 5, 742–748 (2010). https://doi.org/10.1038/nnano.2010.175

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.175

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing