Hybrid superconductor–quantum dot devices

Abstract

Advances in nanofabrication techniques have made it possible to make devices in which superconducting electrodes are connected to non-superconducting nanostructures such as quantum dots. The properties of these hybrid devices result from a combination of a macroscopic quantum phenomenon involving large numbers of electrons (superconductivity) and the ability to control single electrons, offered by quantum dots. Here we review research into electron transport and other fundamental processes that have been studied in these devices. We also describe potential applications, such as a transistor in which the direction of a supercurrent can be reversed by adding just one electron to a quantum dot.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Three hybrid superconductor–quantum dot devices.
Figure 2: Characteristic energy scales and transport regimes.
Figure 3: Resonant Cooper-pair tunnelling in the strong-coupling regime.
Figure 4: Quasiparticle tunnelling in the weak-coupling regime.
Figure 5: Supercurrent reversal in the intermediate-coupling regime (Γ Δ U).
Figure 6: Progress towards molecular spin detectors, spin entanglers, and Josephson light-emitting diodes.

References

  1. 1

    Tinkham, M. Introduction to Superconductivity (McGraw-Hill, 1996).

    Google Scholar 

  2. 2

    Kastner, M. A. Artificial atoms. Phys. Today 46, 24–31 (January 1993).

    CAS  Article  Google Scholar 

  3. 3

    Kouwenhoven, L. P., Austing, D. G. & Tarucha, S. Few-electron quantum dots. Rep. Prog. Phys. 64, 701–736 (2001).

    CAS  Article  Google Scholar 

  4. 4

    Josephson, B. D. Possible new effects in superconductive tunnelling. Phys. Lett. 1, 251–253 (1962).

    Article  Google Scholar 

  5. 5

    Jaklevic, R. C. et al. Quantum interference effects in Josephson tunneling. Phys. Rev. Lett. 12, 159–160 (1964).

    Article  Google Scholar 

  6. 6

    Clarke, J. & Wilhelm, F. K. Superconducting quantum bits. Nature 453, 1031–1042 (2008).

    CAS  Article  Google Scholar 

  7. 7

    Likharev, K. K. Superconducting weak links. Rev. Mod. Phys. 51, 101–159 (1979).

    Article  Google Scholar 

  8. 8

    van Dam, J. A., Nazarov, Y. V., Bakkers, E. P., De Franceschi, S. & Kouwenhoven, L. P. Supercurrent reversal in quantum dots. Nature 442, 667–670 (2006).

    CAS  Article  Google Scholar 

  9. 9

    Katsaros, G. et al. Hybrid superconductor–semiconductor devices made from self-assembled SiGe nanocrystals on silicon. Nature Nanotech. 5, 458–464 (2010).

    CAS  Article  Google Scholar 

  10. 10

    Winkelmann, C. B., Roch, N., Wernsdorfer, W., Bouchiat, V. & Balestro, F. Superconductivity in a single C60 transistor. Nature Phys. 5, 876–879 (2009).

    CAS  Article  Google Scholar 

  11. 11

    Ralph, D. C., Black, C. T. & Tinkham, M. Spectroscopic measurements of discrete electronic states in single metal particles. Phys. Rev. Lett. 74, 3241–3244 (1995).

    CAS  Article  Google Scholar 

  12. 12

    Kasumov, A. Y. et al. Supercurrents through single-walled carbon nanotubes. Science 284, 1508–1511 (1999).

    CAS  Article  Google Scholar 

  13. 13

    Morpurgo, A. F., Kong, J., Marcus, C. M. & Dai, H. Gate-controlled superconducting proximity effect in carbon nanotubes. Science 286, 263–265 (1999).

    CAS  Article  Google Scholar 

  14. 14

    Buitelaar, M. R., Nussbaumer, T. & Schönenberger, C. Quantum dot in the Kondo regime coupled to superconductors. Phys. Rev. Lett. 89, 256801 (2002).

    CAS  Article  Google Scholar 

  15. 15

    Buitelaar, M. R. et al. Multiple Andreev reflections in a carbon nanotube quantum dot. Phys. Rev. Lett. 91, 057005 (2003).

    CAS  Article  Google Scholar 

  16. 16

    Jarillo-Herrero, P., van Dam, J. A. & Kouwenhoven, L. P. Quantum supercurrent transistors in carbon nanotubes. Nature 439, 953–956 (2006).

    CAS  Article  Google Scholar 

  17. 17

    Jorgensen, H. I., Grove-Rasmussen, K., Novotny, T., Flensberg, K. & Lindelof, P. E. Electron transport in single-wall carbon nanotube weak links in the Fabry-Perot regime. Phys. Rev. Lett. 96, 207003 (2006).

    CAS  Article  Google Scholar 

  18. 18

    Cleuziou, J-P., Wernsdorfer, W., Bouchiat, V., Ondarcuhu, T. & Monthioux, M. Carbon nanotube superconducting quantum interference device. Nature Nanotech. 1, 53–59 (2006).

    CAS  Article  Google Scholar 

  19. 19

    Cleuziou, J-P., Wernsdorfer, W., Bouchiat, V., Ondarcuhu, T. & Monthioux, M. Gate-tuned high frequency response of carbon nanotube josephson junctions. Phys. Rev. Lett. 99, 117001 (2007).

    Article  Google Scholar 

  20. 20

    Ingerslev Jørgensen, H. et al. Critical current 0-π transition in designed Josephson quantum dot junctions. Nano Lett. 7, 2441–2445 (2007).

    Article  Google Scholar 

  21. 21

    Eichler, A. et al. Even-odd effect in Andreev transport through a carbon nanotube quantum dot. Phys. Rev. Lett. 99, 126602–126605 (2007).

    CAS  Article  Google Scholar 

  22. 22

    Pallecchi, E., Gaass, M., Ryndyk, D. A. & Strunk, C. Carbon nanotube Josephson junctions with Nb contacts. Appl. Phys. Lett. 93, 072501 (2008).

    Article  Google Scholar 

  23. 23

    Eichler, A. et al. Tuning the Josephson current in carbon nanotubes with the Kondo effect. Phys. Rev. B 79, 161407 (2009).

    Article  Google Scholar 

  24. 24

    Grove-Rasmussen, K. et al. Superconductivity-enhanced bias spectroscopy in carbon nanotube quantum dots. Phys. Rev. B 79, 134518 (2009).

    Article  Google Scholar 

  25. 25

    Jorgensen, H. I., Grove-Rasmussen, K., Flensberg, K. & Lindelof, P. E. Critical and excess current through an open quantum dot: Temperature and magnetic-field dependence. Phys. Rev. B 79, 155441 (2009).

    Article  Google Scholar 

  26. 26

    Wu, F. et al. Single-walled carbon nanotube weak links in Kondo regime with zero-field splitting. Phys. Rev. B 79, 073404 (2009).

    Article  Google Scholar 

  27. 27

    Liu, G., Zhang, Y. & Lau, C. N. Gate-tunable dissipation and “superconductor-insulator” transition in carbon nanotube Josephson junctions. Phys. Rev. Lett. 102, 016803–016806 (2009).

    Article  Google Scholar 

  28. 28

    Doh, Y. J. et al. Tunable supercurrent through semiconductor nanowires. Science 309, 272–275 (2005).

    CAS  Article  Google Scholar 

  29. 29

    Xiang, J. et al. Ge/Si nanowire mesoscopic Josephson junctions. Nature Nanotech. 1, 208–213 (2006).

    CAS  Article  Google Scholar 

  30. 30

    Sand-Jespersen, T. et al. Kondo-enhanced Andreev tunneling in InAs nanowire quantum dots. Phys. Rev. Lett. 99, 126603–126206 (2007).

    CAS  Article  Google Scholar 

  31. 31

    Sand-Jespersen, T. et al. Tunable double dots and Kondo enhanced Andreev transport in InAs nanowires. J. Vac. Sci. Technol. B 26, 1609–1612 (2008).

    CAS  Article  Google Scholar 

  32. 32

    Doh, Y. J. et al. Andreev reflection versus Coulomb blockade in hybrid semiconductor nanowire devices. Nano Lett. 8, 4098–4102 (2008).

    CAS  Article  Google Scholar 

  33. 33

    Frielinghaus, R. et al. Josephson supercurrent in Nb/InN-nanowire/Nb junctions. Appl. Phys. Lett. 96, 132504–132506 (2010).

    Article  Google Scholar 

  34. 34

    Buizert, C., Oiwa, A., Shibata, K., Hirakawa, K. & Tarucha, S. Kondo universal scaling for a quantum dot coupled to superconducting leads. Phys. Rev. Lett. 99, 136806 (2007).

    CAS  Article  Google Scholar 

  35. 35

    Deacon, R. S. et al. Tunneling spectroscopy of Andreev energy levels in a quantum dot coupled to a superconductor. Phys. Rev. Lett. 104, 076805 (2010).

    CAS  Article  Google Scholar 

  36. 36

    Kanai, Y. et al. Electrical control of Kondo effect and superconducting transport in a side-gated InAs quantum dot Josephson junction. Available at http://arxiv.org/abs/0912.3094 (2009).

  37. 37

    Aslamazov, A. G. & Fistul, M. V. Resonant tunneling in superconductor-semiconductor-superconductor junctions. Sov. Phys. JETP 55, 681–684 (1982).

    Google Scholar 

  38. 38

    Beenakker, C. W. J. & van Houten, H. in Single-Electron Tunneling and Mesoscopic Devices (eds Koch, H. & Lübbig, H.) 175–179 (Springer, 1992); see also http://xxx.lanl.gov/abs/condmat/0111505 (2001).

    Google Scholar 

  39. 39

    Beenakker, C. W. J. & van Houten, H. Josephson current through a superconducting quantum point contact shorter than the coherence length. Phys. Rev. Lett. 66, 3056–3059 (1991).

    CAS  Article  Google Scholar 

  40. 40

    Liang, W. J. et al. Fabry–Perot interference in a nanotube electron waveguide. Nature 411, 665–669 (2001).

    CAS  Article  Google Scholar 

  41. 41

    Vion, D., Götz, M., Joyez, P., Esteve, D. & Devoret, M. H. Thermal activation above a dissipation barrier: switching of a small Josephson junction. Phys. Rev. Lett. 77, 3435–3438 (1996).

    CAS  Article  Google Scholar 

  42. 42

    Averin, D. V. & Nazarov, Yu. V. in Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures (eds Grabert, H. & Devoret, M. H.) 217–247 (Plenum and NATO Scientific Affairs Division, 1992).

    Google Scholar 

  43. 43

    Glazman, L. I. & Matveev, K. A. Resonant Josephson current through Kondo impurities in a tunnel barrier. JETP Lett. 49, 659–662 (1989).

    Google Scholar 

  44. 44

    Bulaevskii, L. N., Kuzii, V. V. & Sobyanin, A. A. Superconducting system with weak coupling to the current in the ground state. JETP Lett. 25, 290–294 (1977).

    Google Scholar 

  45. 45

    Tsuei, C. C. & Kirtley, J. R. Pairing symmetry in cuprate superconductors. Rev. Mod. Phys. 72, 969–1016 (2000).

    CAS  Article  Google Scholar 

  46. 46

    Golubov, A. A., Kupriyanov, M. Yu & Il'ichev, E. The current-phase relation in Josephson junctions. Rev. Mod. Phys. 76, 411–469 (2004).

    CAS  Article  Google Scholar 

  47. 47

    Ryazanov, V. V. et al. Coupling of two superconductors through a ferromagnet: evidence for a pi junction. Phys. Rev. Lett. 86, 2427–2430 (2001).

    CAS  Article  Google Scholar 

  48. 48

    Kontos, T. et al. Josephson junction through a thin ferromagnetic layer: Negative coupling. Phys. Rev. Lett. 89, 137007 (2002).

    CAS  Article  Google Scholar 

  49. 49

    Wollman, D. A. et al. Experimental determination of the superconducting pairing state in YBCO from the phase coherence of YBCO-Pb dc SQUIDs. Phys. Rev. Lett. 71, 2134–2137 (1993).

    CAS  Article  Google Scholar 

  50. 50

    Baselmans, J. J. A. et al. Reversing the direction of the supercurrent in a controllable Josephson junction. Nature 397, 43–45 (1999).

    CAS  Article  Google Scholar 

  51. 51

    Spivak, B. I. & Kivelson, S. A. Negative local superfluid densities: The difference between dirty superconductors and dirty Bose liquids. Phys. Rev. B 43, 3740–3743 (1991).

    CAS  Article  Google Scholar 

  52. 52

    Kouwenhoven, L. & Glazman, L. Revival of the Kondo effect. Phys. World 14, 33–38 (January 2001).

    CAS  Article  Google Scholar 

  53. 53

    van der Wiel, W. G. et al. The Kondo effect in the unitary limit. Science 289, 2105–2108 (2000).

    CAS  Article  Google Scholar 

  54. 54

    Clerk, A. A. & Ambegaokar, V. Loss of π-junction behavior in an interacting impurity Josephson junction. Phys. Rev. B 61, 9109–9112 (2000).

    CAS  Article  Google Scholar 

  55. 55

    Rozhkov, A. V., Arovas, D. P. & Guinea, F. Josephson coupling through a quantum dot. Phys. Rev. B 64, 233301 (2001).

    Article  Google Scholar 

  56. 56

    Vecino, E., Martín-Rodero, A. & Levy Yeyati, A. Josephson current through a correlated quantum level: Andreev states and pi junction behavior. Phys. Rev. B 68, 035105 (2003).

    Article  Google Scholar 

  57. 57

    Avishai, Y., Golub, A. & Zaikin, A. D. Superconductor-quantum dot-superconductor junction in the Kondo regime. Phys. Rev. B 67, 041301 (2003).

    Article  Google Scholar 

  58. 58

    Choi, M. S., Lee, M., Kang, K. & Belzig, W. Kondo effect and Josephson current through a quantum dot between two superconductors. Phys. Rev. B 70, 020502 (2004).

    Article  Google Scholar 

  59. 59

    Siano, F. & Egger, R. Josephson current through a nanoscale magnetic quantum dot. Phys. Rev. Lett. 93, 047002 (2004).

    CAS  Article  Google Scholar 

  60. 60

    Oguri, A., Tanaka, Y. & Hewson, A. C. Quantum phase transition in a minimal model for the Kondo effect in a Josephson junction. J. Phys. Soc. Jpn 73, 2494–2504 (2004).

    CAS  Article  Google Scholar 

  61. 61

    Sellier, G., Kopp, T., Kroha, J. & Barash, Y. S. π junction behavior and Andreev bound states in Kondo quantum dots with superconducting leads. Phys. Rev. B 72, 174502 (2005).

    Article  Google Scholar 

  62. 62

    Karrasch, C., Oguri, A. & Meden V. Josephson current through a single Anderson impurity coupled to BCS leads. Phys. Rev. B 77, 024517 (2008).

    Article  Google Scholar 

  63. 63

    Meng, T., Florens, S. & Simon, P. Self-consistent description of Andreev bound states in Josephson quantum dot devices. Phys. Rev. B 79, 224521 (2009).

    Article  Google Scholar 

  64. 64

    Pillet, D-H. et al. Revealing the electronic structure of a carbon nanotube carrying a supercurrent. Available at http://arxiv.org/abs/1005.0443 (2010).

  65. 65

    Dirks, T. et al. Andreev bound state spectroscopy in a graphene quantum dot. Available at http://arxiv.org/abs/1005.2749 (2010).

  66. 66

    Bouchiat, V. Detection of magnetic moments using a nano-SQUID: limits of resolution and sensitivity in near-field SQUID magnetometry. Supercond. Sci. Technol. 22, 064002 (2009).

    Article  Google Scholar 

  67. 67

    Etaki, S. et al. Motion detection of a micromechanical resonator embedded in a d.c. SQUID. Nature Phys. 4, 785–788 (2008).

    CAS  Article  Google Scholar 

  68. 68

    Xue, F. et al. Controllable coupling between flux qubit and nanomechanical resonator by magnetic field. New J. Phys. 9, 35 (2007).

    Article  Google Scholar 

  69. 69

    Sonne, G., Shekhter, R. I., Gorelik, L. Y., Kulinich, S. I. & Jonson, M. Superconducting pumping of nanomechanical vibrations. Phys. Rev. B 78, 144501 (2008).

    Article  Google Scholar 

  70. 70

    Sonne, G., Peña-Aza, M. E., Gorelik, L. Y., Shekhter, R. I. & Jonson, M. Cooling of a suspended nanowire by an ac Josephson current flow. Phys. Rev. Lett. 104, 226802 (2010).

    Article  Google Scholar 

  71. 71

    O'Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010).

    CAS  Article  Google Scholar 

  72. 72

    Recher, P., Sukhorukov, E. V. & Loss, D. Andreev tunneling, Coulomb blockade, and resonant transport of nonlocal spin-entangled electrons. Phys. Rev. B 63, 165314 (2001).

    Article  Google Scholar 

  73. 73

    Lesovik, G. B., Martin, T. & Blatter, G. Electronic entanglement in the vicinity of a superconductor. Eur. Phys. J. B 24, 287–290 (2001).

    CAS  Article  Google Scholar 

  74. 74

    Bouchiat, V. et al. Single-walled carbon nanotube-superconductor entangler: noise correlations and Einstein–Podolsky–Rosen states. Nanotechnol. 14, 77–85 (2003).

    CAS  Article  Google Scholar 

  75. 75

    Hofstetter, L., Csonka, S., Nygard, J. & Schönenberger, C. Cooper pair splitter realized in a two-quantum-dot Y-junction. Nature 461, 960–963 (2009).

    CAS  Article  Google Scholar 

  76. 76

    Herrmann, L. G. et al. Carbon nanotubes as Cooper-pair beam splitters. Phys. Rev. Lett. 104, 026801 (2010).

    CAS  Article  Google Scholar 

  77. 77

    Schoelkopf, R. J. & Girvin, S. M. Wiring up quantum systems. Nature 451, 664–669 (2008).

    CAS  Article  Google Scholar 

  78. 78

    Recher, P., Nazarov, Y. V. & Kouwenhoven, L. P. Josephson light-emitting diode. Phys. Rev. Lett. 104, 156802 (2010).

    Article  Google Scholar 

  79. 79

    Hassler, F., Nazarov, Y. V. & Kouwenhoven, L. P. Quantum manipulation in a Josephson light-emitting diode. Nanotechnol. 21, 274004 (2010).

    Article  Google Scholar 

  80. 80

    Fu, L. & Kane, C. L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).

    Article  Google Scholar 

  81. 81

    Alicea, J. Majorana fermions in a tunable semiconductor device. Phys. Rev. B 81, 125318 (2010).

    Article  Google Scholar 

  82. 82

    Sau, J. D., Lutchyn, R. M., Tewary, S. & Das Sarma, S. Generic new platform for topological quantum computation using semiconductor heterostructures. Phys. Rev. Lett. 104, 040502 (2010).

    Article  Google Scholar 

  83. 83

    Lutchyn, R. M., Sau, J. D. & Das Sarma, S. Majorana fermions and topological phase transition in semiconductor/superconductor heterostructures. Available at http://arxiv.org/abs/1002.4033 (2010).

  84. 84

    Oreg, Y., Refael, G. & von Oppen, F. Helical liquids and Majorana bound states in quantum wires. Available at http://arxiv.org/abs/1003.1145 (2010).

  85. 85

    Roch, N., Florens, S., Bouchiat, V., Wernsdorfer, W. & Balestro, F. Quantum phase transition in a single-molecule quantum dot. Nature 453, 633–638 (2008).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank M. Houzet, S. Frolov and L. Glazman for helpful discussions. S.D.F. acknowledges financial support from the Agence Nationale de la Recherche (ANR) through the ACCESS and COHESION projects. W.W. acknowledges financial support from the ANR (ANR-08-NANO-002) and the European Research Council through the MolNanoSpin project.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Silvano De Franceschi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

De Franceschi, S., Kouwenhoven, L., Schönenberger, C. et al. Hybrid superconductor–quantum dot devices. Nature Nanotech 5, 703–711 (2010). https://doi.org/10.1038/nnano.2010.173

Download citation

Further reading